GRA	DE 11		FEBRUARY 2024
MAT	HEMATICS	INVESTIGATION	TOTAL: 50
NAM	1E:		
	Q	uadratic Number p	atterns
SECT	ΓΙΟΝ A: [25]		
Consi	der the following nu	mber pattern:	
		-1; 2; 9; 20;	
Answ	er the following que	stions on the paper:	
1.	Determine the first	and second difference of the patter $-1;$ 2; 9; 20;	n:
	First difference:		
	Second difference:		(5)
2.	What do you notice	about the second differences?	.49
			(1)

Grade 11

If the second difference is constant, then it is a quadratic number pattern. The general formula for a quadratic number pattern is $T_n = \alpha n^2 + bn + c$

Use the formula $T_n = an^2 + bn + c$ to determine the following:

Let n = 1: $T_1 = \frac{1}{2}$

Let n = 2: $T_2 = \frac{}{}$

Let n = 3: $T_3 =$

Let n = 4: $T_4 =$

(3)

3. Use the info from question 2 and complete the following:

T1

T2

T3

 $\frac{16a + 4b + c}{16a + 4b + c}$

1st difference: ______ 7a + b

2nd difference:

2a

(6)

4. Derive formulas to determine a, b and c.

First term =

First of the 1st differences =

Second difference =

(4)

Grade 11

From the above investigation, we see that the following formulas can be used to determine the n^{th} -term (general term) for any quadratic number pattern:

2a = second difference

 $3a + b = 2^{nd} \text{ term minus } 1^{st} \text{ term}$

a + b + c = 1st term

We use the formulas from bottom to top.

5. Use the above info and determine the general term of the quadratic number pattern in question 1: (hint: solve for a, b and c first)

-1;

2;

9;

20; ...

6. Determine the 50thterm of the above pattern:

·______

Grade 11

SECTION B: [25]

1. Use all the above info and determine the general term of the quadratic number pattern on the given space:

1.3 1.4	244; 193; 148; 109; 3; 5; 8; 12; 3; x; 21; 24		(4) (4) (4) (4) (5) [25]
	My collises co. 49	TOTAL:	50