LEARNER:

LEARNER MARK:

GRADE 11

MATHEMATICS INVESTIGATION

DATE: FEBRUARY 2023

.

MARKS: 50

18 1

II. 10

TIME: 1 Hour

32 COURS **INSTRUCTIONS AND INFORMATION**

- 1. Read the following instructions carefully before answering the questions.
- 2. This task consists of **4 PARTS.**
- 3. Answer ALL the PARTS.
- 4. Clearly show ALL calculations, diagrams, graphs, et cetera which you have used in determining your answers.
- 5. Answers only will not necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and nongraphical), unless stated otherwise.
- 7. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. Write neatly and legibly.

Part 1 [24 MARKS]

Solve the following equations by using the Quadratic formula and answer the subsequent questions:

1	$12x^2 + 5x - 2 = 0$	(3)
	h.	
a.	Are the roots equal or unequal?	(1)
b.	Are the roots rational or irrational?	(1)
c.	Are the roots real or non-real?	(1)
2.	$3x^2 + 6x + 1 = 0$	(3)
	Ŏ	
		(1)
a.	Are the roots equal or unequal?	(1)
b.	Are the roots rational or irrational?	(1)

c.	Are the roots real or non-real?	(1)
3.	$x^2 - 6x + 9 = 0$	(3)
a.	Are the roots equal or unequal?	(1)
b.	Are the roots rational or irrational?	(1)
c.	Are the roots real or non-real?	(1)
4.	$2x^2 + 4x + 10 = 0$	(3)
	S.	
	· Co	
a.	Are the roots equal or unequal?	(1)
b.	Are the roots rational or irrational?	(1)
c.	Are the roots real or non-real?	(1)

Part 2 [16 MARKS]

1. Now that you have done the four examples you must determine the value of

	Equation	$\Delta = b^2 - 4ac$	
a.	$12x^2 + 5x - 2 = 0$		(2)
b.	$3x^2 + 6x + 1 = 0$		(2)
0.	5x + 6x + 1 = 0		(2)
c.	$x^2 - 6x + 9 = 0$		(2)
d.	$2x^2 + 4x + 10 = 0$	0	(2)
		S	[8]

 $b^2 - 4ac$ which is called the discriminant (Δ).

2. Hence, determine the connection between the discriminant and the nature of the

roots of each equation in the table below:

[1			
	Discriminant	Roots are:	Roots are:	Roots are:
		Equal/unequal	Rational/Irrational	Real/Non-Real
$\Delta > 0$ and a				•
perfect				
square				
$\Delta > 0$ and				
is not a				
perfect				
square				
$\Delta = 0$				
$\Delta < 0$				

Part 3 [8 MARKS]

Function	Nature of the roots(from part 2above)	Rough sketch	
$y = 12x^2 + 5x - 2$			(2)
$y = 3x^2 + 6x + 1$			(2)
$y = x^2 - 6x + 9$	The second		(2)
$y = 2x^2 + 4x + 10$	· m		(2)
4 [6 MARKS]	Ċ	CI.S.	I
Application of your ki	nowledge on the nature of roo	ots:	

1. Draw rough sketches to represent the following functions:

Part 4 [6 MARKS]

Application of your knowledge on the nature of roots:	
Prove that the roots of $x^2 + (1-k)x + k - 3 = 0$ are real for all real values of k.	(6)
TOTAL MARKS: 50	

MMM MY COURSES CO. KA