

education

Department:
Education
PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 12

PHYSICAL SCIENCES: CHEMISTRY (P2)
PREPARATORY EXAMINATION
SEPTEMBER 2020

Time: 3 hours

Marks: 150

NB. This question paper consists of 15 pages and 4 Data Sheets.

INSTRUCTIONS AND INFORMATION

- 1. Write your examination number and centre number in the appropriate spaces on the ANSWER BOOK.
- 2. This question paper consists of NINE questions.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two sub questions, e.g. between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. Show ALL formulae and substitutions in ALL calculations.
- 8. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 9. Give brief motivations, discussions, etc. where required.
- 10. You are advised to use the attached DATA SHEETS.
- 11. Write neatly and legibly.
- 12. Answer ALL the questions in the ANSWER BOOK.

QUESTION 1 MULTIPLE CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter A, B, C or D next to the question number in the ANSWER BOOK, e.g. 1.11 A

- 1.1 Which ONE of the following organic compounds is UNSATURATED?
 - A. dichloromethane
 - B. 1-bromo-2-iodopropane
 - C. butan-1-ol

D. 1-chloro-2-floroethene (2)

1.2 Which ONE of the following is TRUE for alcohols?

	Functional group	General formula	Type of chemical reaction
A.	I — C — OH I	CnH2n+2OH	Can undergo substitution reaction
B.	 C OH 	CnH2nOH	Can undergo elimination reaction
C.	I — C — OH I	CnH2n+1OH	Can undergo substitution reaction
D.		C _n H _{2n} OH	Can undergo addition reaction

(2)

- 1.3 Which ONE of the following sets of compounds shows the order of INCREASING STRENGTH of intermolecular forces?
 - A. chloroethane < ethane < ethanol <ethanoic acid
 - B. ethanol < chloroethane < ethanol < ethanoic acid
 - C. ethane < chloroethane < ethanoic acid < ethanol
 - D. ethane < chloroethane < ethanol < ethanoic acid (2)

Physical Science From Stanmore physics. Com Preparatory Examination 2020 Gr 12- NSC

- 1.4 According to the Collision Theory, reaction rate increases when ... decreases
 - A. Temperature
 - B. Concentration
 - C. Activation energy
 - D. Kinetic energy of molecules

(2)

1.5 Consider the following statements about the chemical equilibrium ...

$$4A(s) + CD_2(g) \rightleftharpoons 2A_2D(s) + C(s)$$

 $(\Delta H < 0)$

- I the reverse reaction is endothermic.
- II the equilibrium constant depends on the concentration of CD₂.
- III the concentration of C increases when the temperature is decreased.
- IV adding more A(s) will increase the amount of C(s) at equilibrium.

Which statements are CORRECT?

- A. I and II
- B. II and III
- C. II and IV
- D. III and IV

(2)

1.6 Consider the following hypothetical reaction taking place in a container that has a fixed volume:

$$A_3(g) + B_3(g) \rightleftharpoons$$

$$\Delta H < 0$$

What will be the result of doubling the temperature, on the NUMBER OF MOLES of A₃(g) and the TOTAL MASS of the gases?

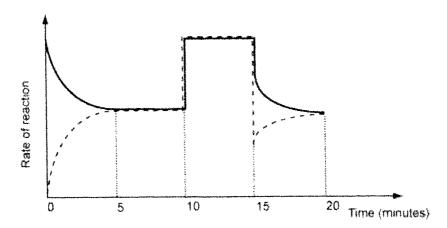
	NUMBER OF MOLES of A ₃ (g)	TOTAL MASS of GASES
A.	Decrease	Increase
В.	Increase	Decrease
C.	Increase	Remains constant
D.	Decrease	Remains constant

(2)

1.7 The following reversible reaction reaches equilibrium in a closed container:

 $H_2(g) +$

l₂ (g)


1) ⇌

2HI (g)

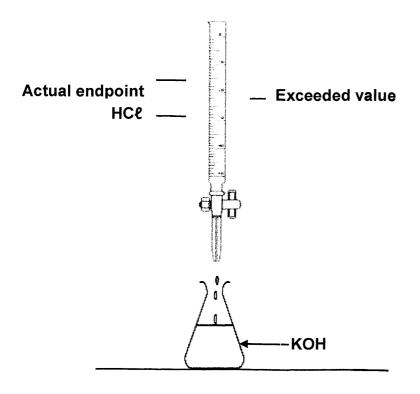
 $\Delta H < 0$

Equilibrium was first established after 5 minutes.

(The broken line on the graph represents the reverse reaction.)

What possible change could have been made to the reaction conditions at t = 10 minutes?

- A. A catalyst was added.
- B. The temperature was increased.
- C. The temperature was decreased.
- D. The external pressure on the reaction mixture was decreased.


(2)

- 1.8 Which ONE of the following statements BEST describes an ACID according to Arrhenius Theory?
 - A. An acid is a proton donor
 - B. It is a substance which decreases the pH of water
 - C. A substance which when added to water increases the hydroxyl ion concentration
 - D. A substance which when added to water increases the hydronium ion concentration

(2)

Physical Sciences Preparatory Examination 2020

In a titration involving HCl and KOH, as shown in the sketch below, a learner 1.9 accidentally exceeds the endpoint.

Which ONE of the following is correct for the solution now in the conical flask?

A.
$$[H^+] > [OH^-]$$
 and pH > 7

B.
$$[H^+] < [OH^-]$$
 and pH > 7

C.
$$[H^+] < [OH^-]$$
 and pH < 7

D.
$$[H^+] > [OH^-]$$
 and pH < 7 (2)

1.10 In the equation:

$$H_2O(\ell) + Y(aq) \rightarrow OH^-(aq) + H_2CO_3 (aq)$$
 e symbol Y represents

The symbol Y represents ...

- A. an acid having the formula CO₃²-
- B. a base having the formula CO₃²-
- C. an acid having the formula HCO3-
- D. a base having the formula HCO3-(2)

[20]

QUESTION 2 (Start on a new page)

The letters A to F in the table below represent six organic compounds. Use the information in the table to answer the questions that follow.

A	H O H I II I H-C-C-C-H I I H H	В	O H II I H – C – O – C – H I H
С	H ₃ CH ₂ C CH ₂ CH ₂ CH ₃ C CH ₂ CH ₃	D	O II CH3 – CH2 – C – H
E	H CI I I C - C - I I H H]n	F	CH3 – CH2 – CH2 – OH

Write down the following:

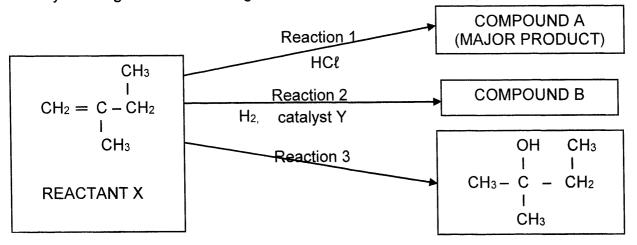
2.1 The IUPAC name of compound C.	(2)
-----------------------------------	-----

- 2.2 The letters of two compounds that are FUNCTIONAL isomers. (1)
- 2.3 The letter of the compound that is the product of a DEHYDRATION reaction. (1)
- 2.4 The IUPAC NAME and STRUCTURAL FORMULA of the monomer of compound E. (3)
- 2.5 The name of the FUNCTIONAL group of compound D. (1)
- 2.6 The compound with the GENERAL FORMULA C_nH_{2n+2}. (1)
- 2.7 The IUPAC name of the POSITIONAL isomer of compound F. (1)

[10]

Physical Science Preparatory Examination 2020 Gr 12- NSC

QUESTION 3 (Start on a new page)


Compounds A, B and C were used to investigate one of the factors that influences boiling point.

	NAME OF COMPOUND	FORMULA	BOILING POINT (°C)
Α	Butane	CH ₃ CH ₂ CH ₂ CH ₃	-0,5
В	Ethanoic acid	СН₃СООН	118
С	Propanol	CH ₃ CH ₂ CH ₂ OH	?

3.1	Define boiling point.	(2)
3.2	Write down an investigative question for this investigation.	(2)
3.3	Name ONE variable, apart from atmospheric pressure, that must be kept constant during this investigation.	(1)
3.4	By referring to the TYPES of intermolecular forces, FULLY EXPLAIN the difference in the boiling points of compounds A and B.	(4)
3.5	How will the vapour pressure of compound A compare with that of compound B? (Choose from: HIGHER THAN, EQUAL TO or LOWER THAN). Give a reason for your answer.	(2)
3.6	Will the boiling point of compound C be HIGHER THAN or LOWER THAN compound B? Explain your answer.	(3) [14]

QUESTION 4 (Start on a new page)

Study the diagram of various organic reactions and answer the questions that follow.

- 4.1. Write down the IUPAC name of reactant X. (2)
- 4.2 Consider REACTION 1:
 - 4.2.1 Name the TYPE of addition reaction that occurs. (1)
 - 4.2.2 Write down the STRUCTURAL FORMULA and IUPAC name of compound A. (4)
- 4.3 Study REACTION 2 and provide:
 - 4.3.1 The name OR formula of catalyst Y. (1)
 - 4.3.2 The IUPAC name of compound B. (2)
- 4.4 For REACTION 3,
 - 4.4.1 State TWO reaction conditions for this reaction. (2)
 - 4.4.2 Name the TYPE of addition reaction. (1)
 - 4.4.3 Is the product formed in this reaction a PRIMARY, SECONDARY or TERTIARY alcohol? Give a reason for the answer. (2)
 - 4.4.4 The PRODUCT of reaction 3 undergoes an ELIMINATION reaction.

 Write down the STRUCTURAL FORMULA and IUPAC NAME of the

 MAJOR product of this reaction.

 (4)

 [19]

Physical Sclerow Preparatory Examination 2020 Gr 12- NSC

QUESTION 5 (Start on a new page)

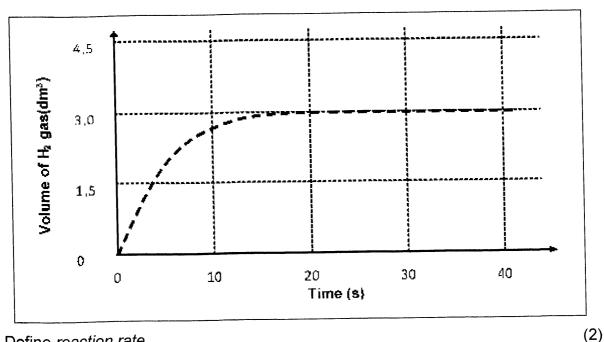
5.1 Propyl heptanoate is a sweet- scented clear liquid that is used in the fragrance industry. It is prepared by the following reaction:

$$C_3H_8O(aq) + C_7H_{14}O_2(aq) \longrightarrow C_{10}H_{20}O_2(aq) + H_2O(\ell)$$

- 5.1.1 Write down the IUPAC name of the ORGANIC acid used in the preparation of propyl hexanoate. (2)
- 5.1.2 Write down the STRUCTURAL FORMULA of propyl heptanoate. (3)
- 5.2 The flow diagram below is an example of a *Cracking reaction*

- 5.2.1 Define a "Cracking Reaction" (2)
- 5.2.2 Name the TYPE of Cracking reaction above. (1)
- 5.2.3 Provide the IUPAC name of compound **Q**. (2)
- 5.2.4 Using MOLECULAR FORMULA, write down the balanced equation for the combustion reaction of octane. (3)

[13]


QUESTION 6 (Start on a new page)

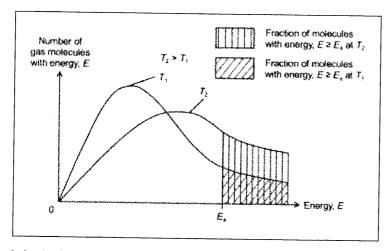
A group of learners perform a series of experiments to test the effect of certain factors on reaction rate when magnesium metal is added to EXCESS hydrochloric acid.

$$Mg(s) \quad + \quad 2HC\ell \ (aq) \quad \rightarrow \quad 2MgC\ell \ _2(aq) \quad + \quad H_2(g) \qquad \quad \Delta H < 0$$

EXPERIMENT	STATE OF MAGNESIUM	MASS OF MAGNESIUM (g)	TEMPERATURE (°C)
1	ribbon	6,0	25
2	ribbon	6,0	15
3	fine powder	4,5	25

The results of **EXPERIMENT 1** were collected and plotted on the graph below:

- 6.1 **Define** reaction rate.
- 6.2 What volume of hydrogen gas was collected in experiment 1 after 40s? (1)
- 6.3 Calculate the average rate of reaction (in dm³.s⁻¹) for experiment 1 over the first 20s.
- How will the rate of reaction be affected if a higher concentration of HCl (aq) is used. Assume that the temperature remains constant.


 (Choose from INCREASES, DECREASES or REMAINS THE SAME.)

 Explain the answer in terms of the Collision Theory.
- Redraw the above graph of experiment 1 in your answer book and on the same system of axes sketch the graphs that will be obtained for experiments 2 and 3. Clearly label your graphs for each experiment.

(4) **[14]**

QUESTION 7 (Start on a new page)

The following diagram shows a Maxwell-Boltzmann distribution curve of a gas sample at temperatures T_1 and T_2 .

- 7.1 Provide labels for the x and y axes of the graph, respectively. (2)
- 7.2 Which graph $(T_1 \text{ or } T_2)$ represents the gas at a higher temperature? (1)
- 7.3 What does the shaded area to the right of label **P** represent? (1)
- 7.4 What would happen to the area under the graph T₁ when a catalyst is added to the reaction mixture. Give a reason (2)
- 7.5 Give a reason why the curve goes through the origin? (1)

QUESTION 8 (Start on a new page)

The table below shows the effect of temperature changes on the value of the equilibrium constant (Kc) when the following reaction takes place in a sealed gas jar:

$$N_2O_4$$
 (g) \leftrightarrows $2NO_2$ (g) (brown gas)

TEMPERATURE (K)	EQUILIBRIUM CONSTANT Kc
300	1,00 x 10 ⁻¹
400	3,00 x 10 ¹
500	1,00 x 10 ³
600	1,00 x 10 ⁴
700	1,20 x 10 ⁴

8.1	State Le Chatelier's principle.								
8.2	What will be the appearance of the gas jar at 700K? (Choose from COLOURLESS or BROWN)								
8.3	Is the reaction EXOTHERMIC or ENDOTHERMIC? Explain.	(4)							
8.4	Write down two ways, other than temperature change, that can increase the RATE of the forward reaction at 500 K.								
8.5	$84,64g$ of N_2O_4 gas was sealed in a 2 dm³ container and heated up to a temperature T. At equilibrium, it was found that $20,7\%$ of the N_2O_4 gas had decomposed to NO_2 . Determine, by means of appropriate calculations, the temperature T at which the reaction took place.	(9)							
8.6	State the effect of adding more N ₂ O ₄ (g) on the value of the equilibrium constant, Kc. (Choose from INCREASES, DECREASES or REMAINS THE SAME). Give a reason for your answer.	(3)							
		[21]							

Physical Science Willoaded from Stanmonephysics. Com Preparatory Examination 2020 Gr 12- NSC

QUESTION 9 (Start on a new page)

Two groups of grade 12 learners were given separate experiments to conduct using a strong base (sodium hydroxide) and weak acids (oxalic acid and ethanoic acid) respectively.

GROUP 1

Learners were asked to determine the percentage purity of a sample of oxalic acid $(H_2C_2O_4)$. To do this, they followed the procedure below:

- (I) Prepared a standard solution of sodium hydroxide by diluting 50,00 cm³ of NaOH solution of concentration 0,63 mol.dm⁻³ to a volume of 1,00 dm³.
- (II) Prepared a solution of oxalic acid by dissolving 0,25 g of the IMPURE SAMPLE in 75 cm³ of water.
- (III) Titrated the oxalic acid solution against the standard NaOH solution. The titration required 40,02 cm³ of the NaOH solution to neutralize ALL the oxalic acid solution in STEP II above.

The equation for the reaction is:

$$2NaOH(aq) + H2C2O4(aq) \rightarrow Na2C2O4(aq) + 2H2O(\ell)$$

- 9.1 Define a standard solution? (2)
- 9.2 Calculate the concentration of the standard NaOH solution. (3)
- 9.3 Calculate the percentage purity of the oxalic acid sample. (7)

GROUP 2

Learners were required to find the concentration and percentage of ethanoic acid in household vinegar. To do this they used the following procedure:

- (I) Diluted a vinegar sample by placing 25cm³ household vinegar in a 250 cm³ volumetric flask and adding water up to the 250 cm³ mark.
- (II) Titrated the diluted vinegar sample with a solution of NaOH of concentration 0,2 mol.dm⁻³.
- 9.4 Calculate the pH of the NaOH solution. (4)

In the titration, 15 cm³ of the diluted vinegar sample needed 30,25 cm³ of the sodium hydroxide solution for the endpoint to be reached.

NaOH(aq) + CH₃COOH(aq)
$$\rightarrow$$
 CH₃COONa(aq) + H₂O(ℓ)

- 9.5 Define end point. (2)
- 9.6 Calculate the concentration of dilute vinegar solution (in ethanoic acid). (4)
- 9.7 If 1cm³ vinegar has a mass of 1g, calculate the percentage ethanoic acid by mass, present in the vinegar. (5)
- 9.8 Sodium ethanoate, CH₃COONa, undergoes hydrolysis.
 - 9.8.1 Define a hydrolysis reaction. (2)
 - 9.8.2 How will the pH of the water be affected by the hydrolysis reaction? (Choose from INCREASES, DECREASES or REMAINS THE SAME) Write a balanced equation that will explain the answer.

[32]

TOTAL MARLS:

(3)

150

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	pθ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	T ⁰	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{N}{N_A}$										
$n = \frac{V}{V_m}$										
pH = -log[H ₃ O ⁺]										
$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298 \text{ K}$										
Ε ^θ anode										
0										
$E_{cell}^{\theta} = E_{reduction}^{\theta} - E_{oxidation}^{\theta} / E_{sel}^{\theta} = E_{reduksie}^{\theta} - E_{oksidasie}^{\theta}$										
or/of $E_{cell}^\theta = E_{oxidisingagent}^\theta - E_{reducingagent}^\theta / E_{sel}^\theta = E_{oksideermiddel}^\theta - E_{reduseermiddel}^\theta$										

0	2	He	4	10	Ne	20	8 .	Ar	40	36	K	84	54	Xe	131	98	Z L			71	Lu	175	103	Ľ	
	L	М	 [6	[* 0't	19		3,0 C	35,5		8,2 Br	08		- S'7	127		2,5 At			70	Λþ	173	102	Ž	
		VI	•	∞	3,5	16	91		32	34		42		2,1 Te	128	84				69	Tm	169	101	Md	
		>	•	7		ļ	15		31	33		75	51		122	83	e,1 ₩	209		89	Er	167	100	Fm	
		71	-	9		12	14		28	32		73	20		119	82	8,1 Pb	207		29	Ho	165	66	Es	m.e4
		111	111	S		11	13						49		115	81	8,1 T	204		99	Dy	163	86	Cf	
				L_	0.0		L			30		65	48		112		Hg	201		65	$\mathbf{T}\mathbf{b}$	159	76	Bk	
										29		63.5	47			62	Au	197		64	P.S	157	96	Cm	
										28		59	46		106	78	Pt	195		63	Eu	152	95	Am	
					Symbol			•	mately)	27		20	45		103	77	Ľ	192		62	Sm	150	94	Pu	
			ıber		S.	9		•	mass (approximately)	26	F)	76	44		101	92	Os	190		61	Pm		93	aN	4
	KEY		mic number ⊥	20	₹ 6'	63.5				25	8,1 8,1	5,5	43			75	Re	186		09	PZ	144	92	Ω	
			Aton	_	•	•	J	•	Relative atomic	24	غ ن'و]	CA CA	8'1 Z	96	74	Ta W Re	184		59	Pr	141	91	Pa	
					tivity –				Relativ	23	9		17	5	92.5	73	Ta	181		85	S	140	06	Th	
				Electronegativity					22		11	40) t'		72	9,1 Hf									
											,5 2 3	ו אל		ξ, >	- 8 I		1,2								
			I		5 4 و	i, De	12	7 7	1 10 20	47	3 6	7 (9,00	s d	7 0	92	6'0	137	88	6,0 8 2	226				
;	-		I,2 H	-	ا د	1,	- 11	6	7 C	27	8,	4 8	33	8, J	2 8	90	6'0 2'0	133	87	7,0 F					

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

TABLE 3: THE PERIODIC TABLE OF ELEMENTS

oksiderende vermoë
y/Toenemende o
3bilit
g oxidising (
Increasing

Half-reaction	s/Ha	alfreaksies	E ⁸ (V)
$F_2(g) + 2e$	grad.	2F	+ 2,87
Co ^{3,} + e	y.	Co ² *	+ 1.81
H ₂ O ₂ + 2H' +2e	0.00	2H ₂ O	+1,77
MnO ₄ + 8H' + 5e	ger#i.	Mn²* + 4H₂O	+ 1.51
Ct₂(g) + 2e	es Cap	2Ct	+ 1,36
Cr2O 7 + 14H + 6e	w.e.	2Cr3+ + 7H ₂ O	+ 1.33
O ₂ (g) + 4H' + 4e	195.4 8	2H ₂ O	+ 1.23
MnO ₂ + 4H' + 2e	39.45	Mn ²⁺ + 2H₂O	+ 1,23
Pt" + 2e	ভাল	Pt	+ 1,20
Br ₂ (t) + 2e ⁻	如骨	2Br	+ 1,07
NO 3 + 4H' + 3e	14. /k	NO(g) + 2H ₂ O	+ 0.96
Hg ²⁺ + 2e	4 .6	Hg(t)	+ 0.85
Ag' + e	40%	Ag	+ 0.80
NO 3 + 2H' + e	girth.	$NO_2(g) + H_2O$	+ 0.80
Fe ³⁺ + e	Section 1	Fe ²⁺	+ 0,77
O ₂ (g) + 2H' + 2e	art.	H ₂ O ₂	+ 0.68
l ₂ + 2e	ri _e A	21	+ 0,54
Cu' + e	M/4	Cu	+ 0.52
SO2 + 4H' + 4e	5x - 35	S + 2H₂O	+ 0.45
$2H_2O + O_2 + 4e$	har.	40H"	+ 0,40
Cu ^{2*} + 2e	168°9°	Cu	+ 0.34
SO ₄ +4H'+2e	\$p. 44	SO₂(g) + 2H₂O	+ 0.17
Cu ²⁺ + e	racit.	Cu,	+ 0.16
Sn4" + 2e	spiells.	Sn ² *	+ 0.15
S + 2H' + 2e	20.00	H₂S(g)	+ 0,14
2H' + 2e	NAME:	H ₂ (g)	0.00
Fe ³⁺ + 3e	ng sitt	Fø	0.06
Pb ^{2*} + 2e	W-4	Pb	-0,13
Sn ^{2*} + 2e	Ho.	Sn	0.14
Ni ²⁺ + 2e	Value	Ni	0,27
Co ²⁺ + 2e Cd ²⁺ + 2e	8550	Co	- 0,28
Cu ₃ . + 6	N/St.	Cd	- 0,40
Fe ^{2*} + 2e	*22	Cr ²⁺	- 0,41
Cr ³⁺ + 3e	(g ₁ , ₂)	Fe C-	0,44
Zn ^{2*} + 2e	76.95	Cr Zn	0.74
2H ₂ O + 2e	900m	H ₂ (g) + 2OH	0.76
Cr2+ 20	A114 A114	Cr	- 0,83 - 0,91
Mn2* + 2e	yon.	Mn	- 1,18
At3+ 3e	40 m.	At	1,66
Mg ^{2*} + 2e	94.5	Mg	2.36
Na' + e	10 to 2	Na	- 2,71
Ca2+ + 2e	3060	Ca	2,87
Sr ²⁺ + 2e	305	Sr	2,89
8a2* + 2e	we.	Ba	2.90
Cs' + e	A: 48	Cs	- 2,92
K* + e	No.	κ	- 2,93
Li* + e	aprill.	Li	- 3,05

Increasing reducing ability/Toenemende reduserende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

vermoe
oksiderende
Toenemende
ising ability/
creasing oxid
ncreasing oxidising ability/Toenemende oksiderende vermoe

Half-reactions/Halfreaksies E ⁰ (V)		
AND THE PERSON AND PROPERTY OF THE PERSON AND PERSON AND PROPERTY OF THE PERSON AND P		
Li' + e	us Li	- 3,05 - 2,93
K' + 0	~ K	
Cs' + e	Cs	2,92 2,90
Ba ² ' + 2o Sr ² ' + 2e	₃. Ba Sr	2,89
		2,87
Ca ² ' + 2e	A (2,71
Na' + e Mg²' + 2e	A.A	2,36
Mg + 2e At ³⁺ + 3e	A #	- 1,66
Mn ² ' + 2e		- 1,18
Min' + 2e Cr ^{7†} + 2e		0,91
2H ₂ O + 2e	Cr H₂(g) + 2OH	0,83
Zn2' + 2e	~9	0,76
2n + 2e Cr ³ + 3e	∞ 2n ⇒ Cr	0,74
Fe ²⁺ + 2e	∞ Fe	0,44
Cr ³ ' + e	** Cr2*	0,41
Cd ²⁺ + 2e	* Cd	0,40
Co ² ' + 2e	Co	0,28
Ni ² ' + 2e	» Ni	0,27
Sn ² ' + 2e	Sn	0,14
Pb ² ' + 2e	_ Pb	- 0,13
Fe ³⁺ + 3e	. Fe	0,06
2H* + 2e"	⊶ H₂(g)	0,00
S + 2H' + 2e	,₂ H ₂ S(g)	+ 0,14
Sn ⁴ ' + 2e	sn2"	+ 0.15
Cu²' + e	Gu⁺	+ 0,16
SO ₄ + 4H' + 2e	$_{-0}$ SO ₂ (g) + 2H ₂ O	+ 0,17
Cu ²⁺ + 2e	Cu	+ 0.34
2H ₂ O + O ₂ + 4e	,-8 4OH	+ 0,40
SO ₂ + 4H' + 4e	_≠ S + 2H ₂ O	+ 0,45
Cu' + 0	sa Cu	+ 0,52
1) + 2e	2 1	+ 0,54
O ₂ (g) + 2H' + 2e	⇒ H ₂ O ₂	+ 0,68
Fo ³ ' + o	Fe ²	+ 0,77
NO 3 + 2H' + e	\sim NO ₂ (g) + H ₂ O	+ 0,80
Ag' + e	** Ag	+ 0,80
Hg ² , + 2e		+ 0,85
NO 3 + 4H' + 3e	≈ NO(g) + 2H ₂ O	+ 0,96
Br ₂ (t) + 2e	.₂ 2Br	+ 1,07
Pt ² + 2 e	∞ Pt	+ 1,20
MnO ₂ + 4H' + 2e	$_{sa}$ Mn ²⁺ + 2H ₂ O	+ 1,23
O ₂ (g) + 4H' + 4e	2H ₂ O	+ 1,23
Cr ₂ O ₇ + 14H' + 6e	2Cr ¹¹ + 7H₂O	+ 1,33
Ct2(g) + 2e	2Cℓ	+ 1,36
MnO ₄ +8H' +5e		+ 1,51
H ₂ O ₂ + 2H' +2 e	∞ 2H ₂ O	+1,77
Co ₃ , + e	- Co ²	+ 1,81
F₂(g) + 2e	_{v*} 2F	+ 2.87

Increasing reducing ability/Toenemende reduserende vermoë

Downloaded from Stanmorephysics.com

NATIONAL SENIOR CERTIFICATE

GRADE 12

PHYSICAL SCIENCES: CHEMISTRY (P2)
PREPARATORY EXAMINATION
MARKING GUIDELINES
SEPTEMBER 2020

Time: 3 hours

Marks: 150

NB. This marking guideline consists of 10 pages.

(1)

[10]

QUESTION 1

[20]

QUESTION 2

2.5

formyl group ✓

2.4 H CI
I J
H-C = C-H whole structure
$$\checkmark$$
 chloroethene \checkmark

(3)

QUESTION 3

3.1	Temperature at which the vapour pressure of a substance is equal to tatmospheric pressure. \checkmark \checkmark	he	(2)
3.2	How does the type of <u>functional group</u> affect the <u>boiling point</u> of an org compound? OR	anic	(2)
	What is the relationship between the <u>functional groups</u> of different organization of the relationship between the <u>functional groups</u> of different organization of the relationship between the <u>functional groups</u> of different organization of the relationship between the <u>functional groups</u> of different organization or groups of the relationship between the <u>functional groups</u> of different organization or groups of the relationship between the <u>functional groups</u> of different organization or groups of the relationship between the <u>functional groups</u> of different organization or groups of the relationship between the <u>functional groups</u> of different organization or groups or grou	anic	
	Dependent and independent variable correctly identified i.e. boiling point and functional group	√	
	Relationship between dependent and independent variables given in the form of a question that cannot be answered by YES or NO.	√	
3.3	Molecular mass✓		(1)
3.4	Compound A has London/induced dipole forces ✓ whereas compound B has London forces and <u>hydrogen bonds</u> . ✓ Hydrogen bonds are stronger that London forces. ✓ Therefore <u>more energy</u> is required to overcome the intermolecular forcempound B. ✓	es in	(4)
3.5	Higher than. ✓ The lower the boiling point, the higher the vapour pressure. ✓		(2)
3.6	Lower than. ✓ Compound C has only one site for hydrogen bonding while compound two sites for hydrogen bonding. ✓ therefore more energy required to separate molecules of B✓	B has	(3)
			[14]

QUESTION 4

4.1 2-methylbut-1-ene (2)

4.2.1 hydrohalogenation ✓ (1)

4.2.2

4.3.1 Pt / Pd /Ni /platinum/palladium/nickel ✓ (1)

4.3.2 2-methylbutane

(2)

4.4.1 <u>Dilute $H_2SO_4 \checkmark \checkmark / \text{dilute } H_3PO_4 \checkmark \checkmark$ </u>
Mild heat \checkmark excess water \checkmark $\underbrace{H_2SO_4 \checkmark OR H_3PO_4 \checkmark}$ (2)

4.4.2 Hydration ✓ (1)

4.4.3 Tertiary. ✓

The -OH/hydroxyl group is joined to the carbon that is joined to 3 other (2) carbon atoms. ✓

4.4.4

[19]

√bal

QUESTION 5

5.1.1 Heptanoic acid ✓✓ / hexanoic acid (2)

5.1.2

5.2.1 The breaking of organic molecules into smaller more useable units. ✓✓ (2)

5.2.2 thermal
$$\checkmark$$
 (1)

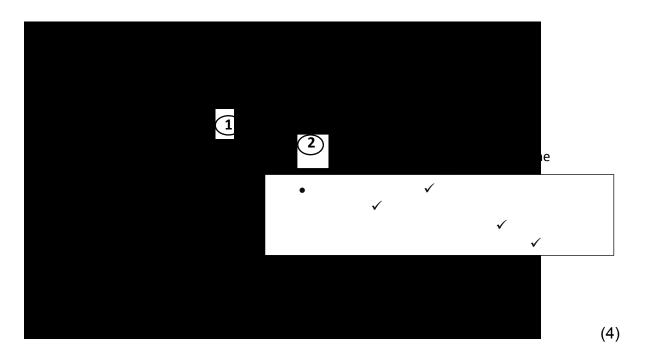
5.2.4
$$2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O$$
 (3)

[13]

QUESTION 6

6.1 Change in concentration / mass / moles/ amount/ volume of reactants(or products) per unit time. ✓√(2)

6.2
$$3.0 \, \text{dm}^3 \, \checkmark$$
 (1)


6.3 Rate of Reaction = ΔV Δt = $3.0 - 0 \checkmark$ $20 - 0 \checkmark$ = $0.15 \text{ dm}^3 \cdot \text{s}^{-1} \checkmark$ (3)

- 6.4 Increases ✓
 - A higher concentration means that there is a greater number of particles per unit volume. ✓

This leads to an increase in the number of collisions per unit time ✓.

This leads to an increase in the number of effective collisions per unit time. ✓ (4)

6.5

[14]

QUESTION 7

7.1	x axis- Kinetic Energy (of molecules)✓ y axis- % of molecules/no of particles✓	(2)
7.2	T ₂ ✓	(1)
7.3	It indicates the percentage of molecules that have more energy than the activation energy at a specific temperature. / It is the percentage of molecules that are capable of effective collisions. ✓	(1)
7.4	The area under the curves remains the same. ✓ The number of molecules in the reaction mixture stays the same/does not change. ✓	(2)
7.5	There are no molecules/particles with ZERO energy. ✓	(1)
		[7]
QUE	STION 8	
8.1	When the equilibrium in a closed system is disturbed, the system will reinstate a new equilibrium by favouring the reaction that will oppose the disturbance.✓✓	(2)
8.2	Brown✓	(1)
8.3	Endothermic. ✓ An increase in temperature will favour the endothermic reaction in an equilibrium reaction. ✓ Since an increase in temperature resulted in an increase in the value of Kc, ✓	
	It can be concluded that the forward reaction is favoured✓	(4)
8.4	Add a catalyst✓	
	Increase the pressure. ✓ <u>Increase concentration of reactant</u> (any two)	(2)

	N ₂ O ₄	NO ₂
Ratio	1	2
Initial mass	84,64g	0
Initial mole	$84,64$ $92 \checkmark$ = 0,92 mol	0
Change in mole	0,19√	0,38
Moles at equilibrium	0,73mol	0,38mol
Equilibrium concentration (mol.dm ⁻³)	0,73 2 = 0,365	0,38 2 = 0,19√

Kc =
$$[NO_2]^2 \checkmark$$

 $[N_2O_4]$
= $(0,19)^2 \checkmark$
 $0,365$
= $0,1 \checkmark$ (9)

Therefore the temperature is 300K√

8.6 Remains the same. ✓
Only change in temperature affects Kc. ✓✓
(3)

[21]

QUESTION 9

9.1 A standard solution is one whose concentration is precisely known. ✓✓ (2)

9.2
$$(C \times V)_{dilute} = (C \times V)_{conc}$$

$$C_{dilute} = (C \times V)_{conc}$$

$$V_{dilute}$$

$$= 0.63 \times 0.05 \checkmark$$

$$= 0.0315 \text{ mol.dm}^{-3} \checkmark$$
 (3)

9.3 <u>Positive marking from Q9.2</u>

$$n_{NaOH} = C \times V$$

= 0,0315 x 0,04 \checkmark
= 1,26 x 10⁻³mol \checkmark

n_{NaOH}: n C2H2O4

2 : 1 $n_{C_2H_2O_4}$ = 6,3 x 10^{-4} mol \checkmark $m_{C_2H_2O_4}$ = n x M \checkmark = 6,3 x 10^{-4} x 90 \checkmark = 0,0567g % purity = 0.0567 \checkmark x 1000.25 1

= 22,68 % ✓ (7)

9.4 **option 1**

Kw =
$$[H_3O^+][OH^-]$$
 = $1x10^{-14} \checkmark$
 $1x10^{-14}$ = $[H_3O^+](0,20)$
 $[H_3O^+]$ = $5 x10^{-14} \checkmark$
pH = $-log[H_3O^+] \checkmark$
= $-log(5 x10^{-14})$
= $13,3 \checkmark$

pOH = $-\log[OH^{-}]$ \checkmark = $-\log(0,2)$ = 0,70 \checkmark pH + pOH = 14 \checkmark pH + 0,70 = 14 pH = 13,3 \checkmark (4)

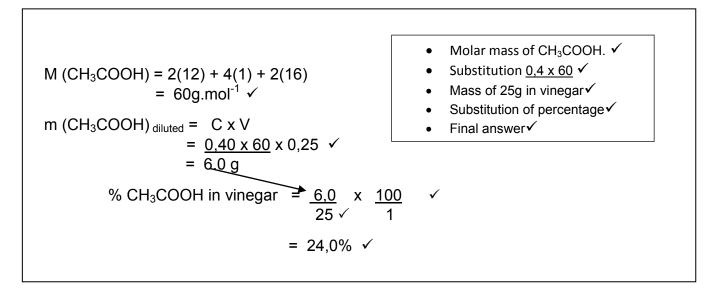
option 2

- 9.5 Is the point in a titration where the indicator changes colour. ✓✓ (2)
- 9.6 $\frac{C_a V_a}{C_b V_b} = \frac{n_a}{n_b}$ $\frac{C_a (15)}{(0,2)(30,25)} \checkmark = \frac{1}{4} \checkmark \text{(ratio)}$
 - $C_a = 0.40 \text{ mol.dm}^{-3} \checkmark$

- Sub on LHS✓✓
- Sub no moles on RHS✓
- Answer with unit√

(4)

9.7 **Option 1** Positive marking from Q9.6


M (CH₃COOH) = 2(12) + 4(1) + 2(16)
= 60g.mol⁻¹ ✓

n (CH₃COOH) diluted = C x V
= 0,40 x 0,25 ✓
= 0,1 mol

m (CH₃COOH) dilute = n x M
= 0,1 x 60
= 6,0g

% CH₃COOH in vinegar =
$$\frac{6,0}{25}$$
 x $\frac{100}{1}$ ✓
$$= 24,0\%$$
 ✓

Option 2 Positive marking from Q9.6

(2)

(5)

9.8.2
$$CH_3COO^-$$
 + H_2O \leftrightarrows CH_3COOH + OH^- (3)
pH will increase \checkmark

[32]

TOTAL MARKS: 150