

education

Department:
Education
PROVINCE OF KWAZULU-NATAL

GRADE 12

NATIONAL SENIOR CERTIFICATE

MATHEMATICS P1

COMMON TEST

JUNE 2019

MARKS: 150

TIME: 3 hours

N.B. This question paper consists of 9 pages and an information sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 13 questions.
- 2. Answer **ALL** questions.
- 3. Clearly show **ALL** calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 6. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Number the answers correctly according to the numbering system used in this question paper. Write neatly and legibly.

Downloaded from Stanmorephysics.com

QUESTION 1

1.1 Solve for x:

1.1.1
$$(x+3)(9+x)=0$$
 (2)

1.1.2
$$-4x^2 + 9x = 3$$
, to TWO decimal places. (4)

$$1.1.3 \quad 2^{x+2} - 3.2^{x-1} = 80 \tag{5}$$

$$1.1.4 \quad \frac{x-4}{2} - \sqrt{x-3} = 1 \tag{5}$$

1.2 Solve for x and y simultaneously given
$$x - 3y = 1$$
 and $x^2 - 2xy + 9y^2 = 17$. (6)

1.3 Solve
$$x^2 - 5x + 4 < 0$$
 (3)

[25]

QUESTION 2

The first four terms of the first difference of a quadratic sequence are 5; 9; 13; 17:... and the 61st term of the quadratic sequence is 7383.

- Calculate the n^{th} term of the quadratic sequence. 2.1 (5)
- Determine between which two consecutive terms is the 1st difference equal to 2021? 2.2 (3)

[8]

Given -3; -1; 1; 3; ... are the first four terms of an arithmetic sequence.

- 3.1 Write down the value of the next term of the sequence. (1)
- 3.2 If the last term of the sequence is 7997, calculate the value of n. (2)
- 3.3 Given the last term is 7997, determine the sum of the terms that are divisible by 5. (4)

[7]

QUESTION 4

- 4.1 1; 4; 16; 64; ... are the first four terms of a geometric sequence.
 - 4.1.1 Write down the value of the common ratio. (1)
 - 4.1.2 Calculate the sum to 16 terms of the sequence. (3)
- 4.2 The sum of the first 3 terms of geometric series is $1\frac{8}{49}$. If the first term is 1, then calculate the value of the common ratio, r(r > 0).

Downloaded from Stanmorephysics.com **QUESTION 5**

Given $f(x) = \frac{a}{x-b} + c$; $A\left(0:\frac{1}{2}\right)$ is the y-intercept of the graph. The asymptotes to the graph intersects the x-axis at 1 and the y-axis at 2 respectively.

- 5.1 Write down the equations of the vertical and horizontal asymptotes of f. (2)
- 5.2 Calculate the value of a. (3)
- 5.3 Determine the coordinates of A^{\prime} , the image of A, if it is reflected about (1; 2). (4)
- 5.4 Determine the equation of g if g(x) = f(x-3). (2)

The graphs of $f(x) = ax^2 + bx + c$; $a \ne 0$ and g(x) = mx + k are sketched below. The x – intercepts of f are Q(2;0) and P(6;0), and the y – intercept is T(0;12). The graph of g intersects f at T and P. M is the turning point of f.

- Show that the values of a = 1, b = -8 and c = 12. (4)
- 6.2 Calculate the co-ordinates of M, the turning point of f. (2)
- 6.3 Write down the range of f. (1)
- 6.4 Write down the value(s) of x for which $\frac{f(x)}{g(x)} \le 0$. (3)
- Determine the values of k for which f(x) = k has two positive unequal real roots. (2)
- 6.6 Determine the values of x for which the graph of g is a tangent to f. (3) [15]

Given $t(x) = 8^x$

7.1 Write down the equation of
$$t^{-1}$$
, the inverse of t , in the form $y = ...$ (2)

7.2 Show that
$$t\left(x + \frac{1}{3}\right) = 2. t(x)$$
. (3)

7.3 Sketch
$$t$$
 and t^{-1} in the same system of axes, showing the line of reflection and intercepts with the axes). (4)

[9]

QUESTION 8

R80 000 was invested in an off-shore company at r % per annum interest rate compounded half yearly. After 5 years the investment grew to R146 338,09. Calculate the interest rate.

(4)

- 8.2 Samuel invested R200 000 with the bank at 11 % per annum, compounded quarterly.
 - After two years he withdrew R60 000 from the investment to buy a car.
 - After a further three years later he withdrew R45 000 to begin his studies.
 - After the last withdrawal the bank increases the interest rate to 12 % per annum compounded monthly.
 - Two years later Samuel decides now he wants to withdraw the entire amount of his investment.

Calculate the total amount of his final withdrawal. (8)

[12]

QUESTION 9

9.1 Determine
$$f'(3)$$
 from first principles given $f(x) = 5x^2 + 4$. (5)

9.2 Differentiate:

9.2.1
$$g(x) = \left(2x - \frac{1}{2x}\right)^2$$
 (4)

9.2.2
$$D_x \left[\frac{x^3 - 1}{1 - x} \right]$$
 (4)

[13]

Given: $f(x) = (x + 2)^2(x - 3)$ is a cubic function.

10.1 Write down the
$$x$$
 - intercepts and the y - intercept of f . (3)

- Determine the local maximum and minimum turning points of f. (4)
- 10.3 Sketch f showing the coordinates of the turning points and the intercepts with the axes. (4)
- 10.4 If f(x) = k has one root equal to 0, write down the value of k. (2)
- 10.5 Given g(x) = f(x-4), write down the coordinates of the new maximum point. (2)
- 10.6 Write down the values of x for which f is concave up. (2)
- Determine the equation of g(x) if $g(x) = f\left(x + \frac{1}{2}\right)$. (2)

QUESTION 11

A piece of wire 10 metres long is cut into two pieces. One piece is bent into a square and the other is bent into the shape of a rectangle. The rectangle has the width the same length as the square.

- The length of the wire used to make the square is x metres. Write down in terms of x the length of the side of the square. (1)
- 11.2 Show that the sum of the areas(S) of the square and the rectangle is given by

$$S = -\frac{1}{8}x^2 + \frac{5}{4}x\tag{4}$$

Determine the value of x for which the sum of the areas is a maximum. (3)

Common Test June 2019

QUESTION 12

An airplane company transports passengers to a holiday resort daily. Upon boarding this flight beverages are given. Each passenger chooses exactly one beverage from the given list.

	MALE	FEMALE	TOTAL,
TEA	35	45	80
COFFEE	x	T. T	90
FRUIT JUICE	5	W.	30
TOTAL	80	120	p

12.1	write down the value of p .	(1)
122	Calculate the probability that a random salested passanyaris a famile	(2)

- 12.2 Calculate the probability that a random selected passenger is a female. (2)
- Given the event of choosing fruit juice is independent of being a male, calculate the value of z. (6)

[9]

QUESTION 13

If it is given that P(A) = 0.34, P(B) = 0.26 and P(A or B) = 0.55, determine:

- 13.1 P(A and B) (3)
- 13.2 Are the events A and B mutually exclusive? Explain. (2)

TOTAL: 150

INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1 + ni)$$

$$A = P(1 - ni)$$

$$A = P(1+ni)$$
 $A = P(1-ni)$ $A = P(1-i)^n$

$$A = P(1+i)^n$$

$$T_n = a + (n-1)d$$

$$T_n = a + (n-1)d$$
 $S_n = \frac{n}{2}(2a + (n-1)d)$

$$T_n = \alpha r^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{1}$$

$$r \neq 1$$

$$S_n = \frac{a(r^n - 1)}{r}$$
; $r \neq 1$ $S_n = \frac{a}{1 - r}$; $-1 < r < 1$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$P = \frac{x[1 - (1 + i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad \text{M}\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$y - y_1 = m(x - x_1)$$
 $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cdot \cos A$ area $\triangle ABC = \frac{1}{2}ab \cdot \sin C$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha . \cos \alpha$$

$$\overline{x} = \frac{\sum x}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$\hat{y} = a + bx$$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

Downloaded from Stanmorephysics.com

education

Department:
Education
PROVINCE OF KWAZULU-NATAL

MATHEMATICS

PAPER 1

JUNE COMMON TEST

MARKING GUIDELINE

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

TIME: 3 hours

This memorandum consists of 14 pages.

1.1.1	$x = -3 or \ x = -9$	A✓ -3 A✓ -9	(2)
1.1.2	$-4x^2 + 9x - 3 = 0$	A√standard form	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $= \frac{-(9) \pm \sqrt{(9)^2 - 4(-4)(-3)}}{2(-4)}$ $= 0.41 \qquad or \qquad 1.84$	CA✓substitution in correct formula CACA✓answers (penalize 1 mark if rounding off is incorrect-once for entire paper)	(4)
1.1.3	$2^{x+2} - 3 \cdot 2^{x-1} = 80$		
	$2^{x}(2^{2}-3.2^{-1})=80$	A√factorization	
	$2^{x} \left(\frac{5}{2}\right) = 80$ $2^{x} = 80 \times \frac{2}{5} = 32$	CA√simplifying bracket	
		$CA \checkmark 2^x = 32$	
	$2^x = 2^5$	CA√Exponential form	
	x = 5	CA✓answer	(5)
1.1.4	$\frac{x-4}{2} - \sqrt{x-3} = 1$ $x-4-2\sqrt{x-3} = 2$ $x-6 = 2\sqrt{x-3}$ $x^2 - 12x + 36 = 4x - 12$		
	$x-4-2\sqrt{x-3}=2$	A√Isolating surd	
	$\begin{vmatrix} x - 6 = 2\sqrt{x} - 3 \\ 2 & 12 & 13 \end{vmatrix}$	CA✓ squaring	
	$\begin{vmatrix} x^2 - 12x + 36 = 4x - 12 \\ 2 - 16 & 40 \end{vmatrix}$	CA√standard form	
	$x^2 - 16x + 48 = 0$		
	(x-4)(x-12) = 0 x = 4 or $x = 12$	CA√factors	
	$\begin{vmatrix} x = 4 & 0r & x = 12 \\ n/a & & & \end{vmatrix}$	$CA \checkmark x$ – values and rejecting	(5)

	NSC - Warking	Guidelinie	
1.2	$x - 3y = 1 \qquad \to (1)$		
	$x^2 - 2xy + 9y^2 = 17 \rightarrow (2)$	A Concluing with a surbinat	
	$(1): x = 3y + 1 \longrightarrow (3)$	$A\checkmark$ making x the subject	
	$(3y+1)^2 - 2y(3y+1) + 9y^2 = 17$	CA√substitution into equation (2)	
	$9y^2 + 6y + 1 - 6y^2 - 2y + 9y^2 - 17 = 0$		
	$12y^2 + 4y - 16 = 0$		
	$3y^2 + y - 4 = 0$	CA√standard form	
	(3y+4)(y-1)=0	CA√factors	
	$y = \frac{-4}{3} or y = 1$	CA √ y values	
		,	
	x = -3 or $x = 4$	$CA \checkmark x$ values	(6)
1.3		A√factors	
	.\ /	CA✓ Critical Values	
	+\-/+		
	<u> </u>	A✓ Notation	(3)
	$x^2 - 5x + 4 < 0$		
	(x-1)(x-4) < 0		
	1 < x < 4		
			[25]

2.1	T_1 T_2 T_3 T_4		
	1D 5 9 13		
	2D 4 4		
	$2a = 4 \qquad a = 2$ $3a + b = 5 \qquad b = -1$	$A \checkmark a$ value	
	$T_n = 2n^2 - n + c$ $T_{61} = 2(61)^2 - (61) + c = 7383$ $c = 7383 - 7381$	CA ✓ b value CA ✓ Substitution of 61 and equating to 7383	
	$c = 2$ $T_n = 2n^2 - n + 2$	CA ✓ c value CA ✓ answer	(5)

Copyright Reserved

NSC - Marking Guideline

	NSC - Marking Gu		
2.2	4n+1=2021	A√equating nth term to 2021	
	4n = 2020	$CA\checkmark$ value of n	
	n = 505		
	Between T_{505} and T_{506}	CA✓ answer	
			(3)
	OR	OR	
	$T_n - T_{n-1} = 2021$		
	$2n^2 - n + 2 - [2(n-1)^2 - (n-1) + 2]$	A√substitution	
	= 2021		
	= 2021		
	$2n^2 - n + 2 - [2n^2 - 4n + 2 - n + 1 + 2]$		
	= 2021		
	- 2021		
	4n = 2024		
	m - 506	$CA\checkmark$ value of n	
	n = 506	CA value of n	
	Between 505 th and 506 th	CA✓ answer	(3)
	OR	OR	
	T = T = 2021		
	$T_{n+1} - T_n = 2021$		
			[8]

3.1	5	A✓ answer	(1)
3.2	2n-5=7997	A \checkmark equating n^{th} term to 7997	
	2n = 8002 $n = 4001$	CA \checkmark answer (n must be natural)	(2)
3.3	Pattern: 5; 15; 25; 35;;7995	A√Sequence A√n th term	
	10n - 5 = 7995	$\mathbf{A} \mathbf{v} n^{-}$ term	
	$S_{800} = \frac{800}{2} [5 + 7995]$	$CA \checkmark n$ – value (<i>n</i> must be natural)	
	$= 3 \ 200 \ 000$	CA✓answer	(4)
			[7]

OUESTION 4

QUES	1101/14		
4.1.1	4	A√answer	(1)
4.1.2	$S_n = \frac{a(r^n - 1)}{r - 1}$ $S_{16} = \frac{1(4^{16} - 1)}{4 - 1}$ $= 1 \ 431 \ 655 \ 765$	A \checkmark substitution a into correct formula CA \checkmark substitution of r into correct formula CA \checkmark answer	(3)
4.2	$a = 1$ $a + ar + ar^{2} = S_{3}$ $1 + r + r^{2} = 1\frac{8}{49} = \frac{57}{49}$ $49r^{2} + 49r - 8 = 0$ $(7r - 1)(7r + 8) = 0$ $r = \frac{1}{7}or = -\frac{7}{8}$ n/a	A \checkmark substituting $a = 1$ A \checkmark equating to $1\frac{8}{49}$ CA \checkmark standard form CA \checkmark factors CA \checkmark answers and rejecting	(5)
			[9]

5.1	x = 1 and $y = 2$		AA✓✓ both asymptote equations	(2)
5.2	$y = \frac{a}{x+p} + q$			
	$y = \frac{a}{x - h} + c$		CA \checkmark substitution of b and c values	
	$y = \frac{x}{x-1} + 2$		A✓substitution of point A	
	$A\left(0; \frac{1}{2}\right):$ $\frac{1}{a} = \frac{a}{a} + 2$			
	$\begin{vmatrix} \frac{1}{2} = \frac{a}{0-1} + 2 \\ -\frac{3}{2} = -a \end{vmatrix}$			
	$a = \frac{3}{2}$		$CA \checkmark a$ – value(must be positive)	(3)
5.3	By using the gradient	method	-	
	From point A move 1 right and 1,5 unit vert	unit horizontally to the ically upward.	A✓transformation comment	
	Move 1,5 unit vertical horizontally to the lef		A✓transformation comment	
	$A'\left(2;3\frac{1}{2}\right)$	Answer only – full	CACA✓✓coordinates	(4)
	OR	marks	OR	
	intersection of the asy	sses through the point of emptotes	A✓ comment	
	$A\left(0; \frac{1}{2}\right)$ and $A\left(1; \frac{1}{2}\right)$ $A\left(2(1) - 0; 2(2) - \frac{1}{2}\right)$	2)		
	A'(2(1)-0; 2(2)-	$-\frac{1}{2}$	A√midpoint formula	
	$A/\left(2; 3\frac{1}{2}\right)$		CACA✓✓coordinates	(4)
			Answer only – full marks	

Mathema DOWN loaded from Stanmore physics.com NSC - Marking Guideline

June 2019 Common Test

5.4	$g(x) = \frac{\frac{3}{2}}{x-4} + 2$ or $g(x) = \frac{3}{2(x-4)} + 2$	CACA✓✓answer	(2)
			[11]

QUESTION 6

6.1	$y = a(x - x_1)(x - x_2)$	A√formula	
	$ \begin{vmatrix} 12 = a(0-2)(0-6) \\ 12 = 12a \end{aligned} $	$A\checkmark$ substituting x and y intercepts.	
	a = 1	A√simplifying	
	$y = x^{2} - 8x + 12$ $b = -8 \text{ and } c = 12$	A√equation	(4)
6.2	$x = \frac{2+6}{2} = 4$	CA✓axis of symmetry (x must be positive)	(2)
	or $x = -\frac{b}{2a} = -\frac{(-8)}{2(1)} = 4$	CA✓minimum value (y must be negative)	(2)
	or		
	f'(x) = 2x - 8 = 0		
	x = 4		
	$y = (4)^2 - 8(4) + 12 = -4$ $M(4; -4)$		
6.3	$y \in (-\infty; -4)$	CA√answer	(1)
	OR		
	$y \ge -4$		
6.4	$2 \le x < 6 \text{ or } x > 6$	$A\checkmark\checkmark 2 \le x < 6 \checkmark x > 6$	(3)
	$x \ge 2$; $x \ne 6$	$A \checkmark x \neq 6 \qquad \checkmark \checkmark x \geq 2$	
6.5	-4 < k < 12	CA✓ critical values A✓notation	(2)
6.6	f'(x) = 2x - 8 = -2	A√derivative	
	2x = 6	A \checkmark equating to -2	(2)
	x = 3	$CA \checkmark x$ – value	(3)
			[15]

NSC - Marking Guideline

QUESTION 7

7.1	$y = \log_8 x$	AA✓✓ answer	(2)
7.2	$t(x) = 8^x$		
	$t(x) = 8^{x}$ $t\left(x + \frac{1}{3}\right) = 8^{x + \frac{1}{3}}$	A \checkmark substituting $\left(x + \frac{1}{3}\right)$	
	$=8^{x}.8^{\frac{1}{3}}$	$\mathbf{A} \checkmark 8^x \cdot 8^{\frac{1}{3}}$	
	$= 8^{x} \cdot (2^{3})^{\frac{1}{3}}$ $= 8^{x} \cdot 2$ $= 2 \cdot t(x)$	A✓ writing in exponential form	(3)
	$-2.1(\lambda)$		

			[9]
7.3	y = x 0 x 1 1 1 1 1	Exponential: A✓ shape A✓ intercepts of both graphs with the axes Log graph: A✓ shape A✓ line of reflection	(4)

8.1	$A = P(1+i)^n$		
	$146338,09 = 80000 \left(1 + \frac{i}{2}\right)^{10}$	A√substitution into formula	
	$\left(1 + \frac{i}{2}\right)^{10} = \frac{146338,09}{80000}$		
	$i = 2 \left(\sqrt[10]{\frac{146338,09}{80000}} - 1 \right)$	$CA\checkmark$ making i the subject	
	i = 0.1244999989	CA√decimal value	
	Therefore, the interest rate = 12,45 % p.a.		(4)
	compounded half yearly	CA✓answer	(4)
8.2	$A = P_1(1+i_1)^{n_1}(1+i_2)^{n_2}$	AAAAAAAA	(8)
	$-P_2(1+i_1)^{n_3}(1+i_2)^{n_4} -P_3(1+i_2)^{n_5}$		
	3(2)		
	$A = 200000 \left(1 + \frac{11}{400} \right)^{20} \left(1 + \frac{12}{1200} \right)^{24}$		
	$-60000 \left(1 + \frac{11}{400}\right)^{12} \left(1 + \frac{12}{1200}\right)^{24}$		
	$-45000 \left(1 + \frac{12}{12000}\right)^{24}$		
	= R274 260,98		
	OR		
	$A = P(1+i)^n$	OR	
	$A = 200000\left(1 + \frac{11\%}{4}\right)^8$	A \checkmark substitution of i and n	
	=R 248 476,1104	CA√answer	
	$A = 188467,1104\left(1 + \frac{11\%}{4}\right)^{12}$	A \checkmark substitution of i and n	
	R260 998,6597	CA ✓ P value	
	$A = 215998,6597 \left(1 + \frac{12\%}{12}\right)^{24}$	A \checkmark substitution of i and n	
	R274 260,98	CA ✓P value CA ✓ answer	(9)
		CA v answer	(8)
			[12]

QUESTION 9 (penalize 1 mark once for incorrect notation in this question)

9.1	$f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$	A√formula	
	$= \lim_{h \to 0} \frac{h}{h}$ $= \lim_{h \to 0} \frac{5(3+h)^2 + 4 - (5(3)^2 + 4)}{h}$	A✓substitution	
	$= \lim_{h \to 0} \frac{45 + 30h + 5h^2 + 4 - 49}{h}$ $h(30 + 5h)$	CA✓ simplification of numerator	
	$=\lim_{h\to 0}\frac{h(30+5h)}{h}$	CA ✓ factorization	
	= 30 OR	CA√answer OR	(5)
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	A√formula	
	$f'(x) = \lim_{h \to 0} \frac{5(x+h)^2 + 4 - (5x^2 + 4)}{h}$	A✓substitution	
	$f'(x) = \lim_{h \to 0} \frac{5x^2 + 10xh + 5h^2 + 4 - 5x^2 - 4}{h}$ $f'(x) = \lim_{h \to 0} \frac{10xh + 5h^2}{h}$	CA√factorization	
	$f'(x) = \lim_{h \to 0} \frac{h(10x + 5h)}{h}$		
	f'(x) = 10x	CA ✓ value of derivative	
	f'(3) = 10(3) = 30	CA✓ answer	(5)
9.2.1	$g(x) = \left(2x - \frac{1}{2x}\right)^2$	A√ first and last terms	
	$=4x^2-2+\frac{1}{4}x^{-2}$	A ✓ middle term	
	$g'(x) = 8x - \frac{1}{2}x^{-3}$	CACA✓✓ derivatives	(4)

NSC - Marking Guideline			
9.2.2	$D_x \left[\frac{x^3 - 1}{1 - x} \right]$		
	$= D_x \left[\frac{(x-1)(x^2+x+1)}{-(x-1)} \right]$	A√factorizing numerator A√factorizing denominator	
	$= D_x [-x^2 - x - 1]$ = -2x - 1	CACA✓✓ each derivative	(4)
			[13]

10.1	x = -2 or x = 3 and y = -12	$A \checkmark \checkmark x$ - intercepts	(3)
	OR	$A \checkmark y$ - intercept.	
	(-2;0); (3;0); (0;-12)		
10.2	$f(x) = (x+2)^2(x-3)$		
	$= (x^2 + 4x + 4)(x - 3)$		
	$= x^3 - 3x^2 + 4x^2 - 12x + 4x - 12$		
	$= x^3 + x^2 - 8x - 12$	A√expression	
	$f'(x) = 3x^2 + 2x - 8 = 0$	CA✓derivative equal to 0	
	(3x-4)(x+2)=0		
	$x = \frac{4}{3} or x = -2$	$CA \checkmark x - values$	
	y = -18,52 or y = 0	$CA \checkmark y - values$	(4)
	Maximum : (-2; 0)		(4)
	$Minimum : \left(\frac{4}{3}; -18,52\right)$		

	NSC - Marking Guideli	ne	
10.3	ν. Δ	$CA \checkmark x$ – intercepts	
	y ↑	$CA \checkmark y - intercept$	
	1	CA√turning points	
	(20)	A✓shape	
	(-2;0) /3 x	71 Shape	
	_12 /		
	/ /		
	(1.22, 19.52)		
	(1.33; –18.52)		(4)
			(1)
	↓		
	,		
10.4	k = -12	CACA✓✓answer	(2)
10.5	(2;0)	$CA \checkmark x$ – value	(2)
		CA ✓y – value	
10.6	$f'(x) = 3x^2 + 2x - 8$		
		CA✓ second derivative and	
	f''(x) = 6x + 2 = 0	equal to 0	
	$\begin{vmatrix} 1 \end{vmatrix}$	CA√answer	(2)
	$x > -\frac{1}{3}$		(2)
10.7	$f(x) = (x+2)^2(x-3)$		
	$(1) (1)^2 (1)$		(2)
	$f\left(x+\frac{1}{2}\right) = \left(x+2\frac{1}{2}\right)^2 \left(x-2\frac{1}{2}\right)$	AA✓✓ for each bracket	(4)
			[19]
			[17]

11.1	$\frac{x}{4}$	A✓answer	(1)
11.2			
	Length of side of square = $\frac{x}{4}$ Length of rectangle = $\frac{10 - x - \frac{x}{2}}{2} = \frac{20 - 3x}{4}$	A√length of rectangle	
	Length of rectangle = $\frac{2}{2} = \frac{28}{4}$ $S = \frac{x^2}{16} + \frac{x}{4} \left(\frac{20 - 3x}{4} \right)$ $= \frac{x^2}{16} + \frac{20x - 3x^2}{16}$	A✓✓each area	
	$= \frac{16}{16} + \frac{16}{16}$ $= \frac{-2x^2 + 20x}{16}$ $= -\frac{1}{8}x^2 + \frac{5}{4}x$	A√simplifying	(4)
11.3	$S = -\frac{1}{8}x^{2} + \frac{5}{4}x$ $S'(x) = -\frac{1}{4}x + \frac{5}{4} = 0$ $x = 5 \text{ metres}$	A✓derivative A✓derivative equal to 0 CA✓answer	(3)
			[8]

NSC - Marking Guideline

QUESTION 12

12.1	200	A√answer	(1)
12.2	120 3	A√120	
	$\frac{120}{200}$ or $\frac{3}{5}$ or 0,6 or 60%	A√answer	(2)
12.3	$P(Male) = \frac{80}{200} = \frac{2}{5} = 0.4 = 40\%$	$A \checkmark \frac{80}{200} = \frac{2}{5} = 0,4 = 40\%$	
	P(Choosing Fruit Juice) = $\frac{30}{200} = \frac{3}{20} = 0.15 = 15\%$	$A \checkmark \frac{30}{200} = \frac{3}{20} = 0,15 = 15\%$	
	$P(Male choosing Fruit Juice) = \frac{z}{200}$	$A\sqrt{\frac{z}{200}}$	
	P(Male choosing Fruit Juice)	200	
	$= P(Male) \times P(Choosing Fruit Juice)$	A✓Condition of independent	
	z 2 3	events	
	$\frac{z}{200} = \frac{2}{5} \times \frac{3}{20}$		
	z 6	CA✓ substitution in the condition	
	$\frac{1}{200} = \frac{1}{100}$	of independent events	
	100z = 1200	_	
	z = 12	CA✓answer	(6)
			[9]

QUESTION 13

13.1	P(A or B) = P(A) + P(B) - P(A and B)	A√ Formula	
	0.55 = 0.34 + 0.26 - P (A and B)	A✓substitution	
	$P (A \text{ and } B) = \frac{1}{20} = 0.05$	A√answer	(3)
13.2	No	A√No	
	$P(A \text{ and } B) \neq 0$	A✓Justification	(2)
			[5]

TOTAL: 150