Downloaded from Stanmorephysics.com ## NATIONAL SENIOR CERTIFICATE **GRADE 12** **MATHEMATICS P1** **SEPTEMBER 2019** PREPARATORY EXAMINATIONS **MARKS: 150** TIME: 3 hours N.B. This question paper consists of 10 pages and an information sheet. #### INSTRUCTIONS AND INFORMATION Read the following instructions carefully before answering the questions. - 1. This question paper consists of 13 questions. - 2. Answer **ALL** questions. - 3. Clearly show **ALL** calculations, diagrams, graphs, et cetera that you have used in determining your answers. - 4. Answers only will not necessarily be awarded full marks. - 5. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise. - 6. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise. - 7. Diagrams are NOT necessarily drawn to scale. - 8. Number the answers correctly according to the numbering system used in this question paper. Write neatly and legibly. 1.1 Solve for x: 1.1.1 $$x(4-x)=0$$ (2) 1.1.2 $$2x^2 + 5x = 1$$ (rounded off to 2 decimal places) (4) 1.2 Given: $\sqrt{x-2} = 2 - x$ 1.2.1 Solve for $$x$$. (4) 1.2.2 Hence, or otherwise, determine the value(s) of p if $\sqrt{p^2 - p - 2} = 2 + p - p^2$ (4) 1.3 Solve: $$-2x^2 + 5x \le 0$$ (4) 1.4 If $$2^{x+1} + 2^x = 3^{y+2} - 3^y$$, and x and y are integers, calculate the value of $x + y$. [24] ### **QUESTION 2** The first four terms of a quadratic sequence are 8;15; 24; 35;... 2.1 Write down the next TWO terms of the quadratic sequence. (1) 2.2 Determine the n^{th} term of the sequence. (4) [5] The first three terms of an arithmetic sequence are 2p-3; p+5; 2p+7. - 3.1 Determine the value(s) of p. (3) - 3.2 Calculate the sum of the first 120 terms. (3) - 3.3 The following pattern is true for the arithmetic sequence above: $$T_1 + T_4 = T_2 + T_3$$ $$T_5 + T_8 = T_6 + T_7$$ $$T_9 + T_{12} = T_{10} + T_{11}$$ $$\therefore T_k + T_{k+3} = T_x + T_y$$ - 3.3.1 Write down the values of x and y in terms of k. (2) - 3.3.2 Hence, calculate the value of $T_x + T_y$ in terms of k in simplest form. (4) [12] ### **QUESTION 4** 4.1 Given: $\sum_{k=1}^{\infty} 5(3^{2-k})$ - 4.1.1 Write down the value of the first TWO terms of the infinite geometric series. (2) - 4.1.2 Calculate the sum to infinity of the series. (2) - 4.2 Consider the following geometric sequence: $$\sin 30^{\circ}; \cos 30^{\circ}; \frac{3}{2}; ...; \frac{81\sqrt{3}}{2}$$ Determine the number of terms in the sequence. (5) [9] Given $$f(x) = \frac{-4}{2-x} - 1$$ - 5.1 Write down the equations of the vertical and horizontal asymptotes of f. (2) - 5.2 Determine the intercepts of the graph of f with the axes. (3) - Draw the graph of f. Show all intercepts with the axes as well as the asymptotes of the graph. (4) ### **QUESTION 6** In the diagram, the graphs of $f(x) = -x^2 + 5x + 6$ and g(x) = x + 1 are drawn below. The graph of f intersects the x – axis at B and C and the y – axis at A. The graph of g intersects the graph of f at B and S. PQR is perpendicular to the x – axis with points P and Q on f and g respectively. M is the turning point of f. - 6.1 Write down the co-ordinates of A. (1) - 6.2 S is the reflection of A about the axis of symmetry of f. Calculate the coordinates of S. (2) - 6.3 Calculate the coordinates of B and C. (3) - 6.4 If PQ = 5 units, calculate the length of QR. (4) - 6.5 Calculate the: 6.5.1 Coordinates of M. (4) 6.5.2 Maximum length of PQ between B and S. (4) [18] In the diagram, the graph of $g(x) = \log_5 x$ is drawn. - 7.1 Write down the equation of g^{-1} , the inverse of g, in the form y = ... (2) - 7.2 Write down the range of g^{-1} . (1) - 7.3 Calculate the value(s) of x for which $g(x) \le -4$. (4) ### **QUESTION 8** - 8.1 A car depreciated at the rate of 13,5 % p.a. to R250 000 over 5 years according to the reducing balance method. Determine the original price of the car, to the nearest rand. - 8.2 Melissa takes a loan of R950 000 to buy a house. The interest is 14,25 % p.a. compounded monthly. His first instalment will commence one month after taking out the loan. - 8.2.1 Calculate the monthly repayments over a period of 20 years. (4) - 8.2.2 Determine the balance on the loan after the 100th instalment. (4) - 8.2.3 If Melissa failed to pay the 101st, 102nd, 103rd and 104th instalments, calculate the value of the new instalment that will settle the loan in the same time period. (4) Copyright Reserved Please Turn Over [15] [7] 9.1 Determine $$f'(x)$$ from first principles given $f(x) = x^2 - \frac{1}{2}x$. (5) #### 9.2 Determine: 9.2.1 $$\frac{d}{dx} \left[3x^4 + \sqrt[5]{x} + a^2 \right]$$ (3) 9.2.2 $$\frac{dy}{dx}$$, if $xy = x + x^2 - 1$. (4) [12] ### **QUESTION 10** In the diagram, the graph of $f(x) = x^3 + 5x^2 - 8x - 12$ is drawn. A and B are the turning points and C the y - intercept of f. g(x) = mx + c is a tangent to the graph of f at C. D is the intersection of f and g. ### 10.1 Calculate the: 10.1.1 co-ordinates of the *x*-intercepts of $$f$$. (6) 10.1.3 $$x$$ – coordinate of the point of inflection of f . (2) #### 10.2 Determine the: 10.2.1 equation of the $$g$$. (2) 10.2.2 values of x for which $$f'(x)$$, $g'(x) > 0$. (3) [17] In the diagram below, $\triangle ABC$ is an equilateral triangle with sides d units long. P and S are points on sides AB and AC respectively. Q and R are points on BC such that PQRS is a rectangle. BQ = RC = 2y units. - Show that the area of the rectangle PQRS is given by $A = 2\sqrt{3}y(d-4y)$. (4) - 11.2 Determine the maximum area of the rectangle in terms of d. (6) [10] ### **QUESTION 12** A bag contains 12 blue balls, 10 red balls and 18 green balls. 2 balls are chosen at random without replacement. Determine the probability: - 12.1 if the two balls chosen at random are green. (3) - 12.2 if the two balls chosen at random are blue and red. (3) [6] The digits 1, 2, 3, 4, 5, 6, 7, 8, 9 are used to form 3 - digit codes, eg. 567, 218, etc. Determine the number of different codes that can be formed: | 13.3 | such that the middle digit is 5 and repetition is allowed. | (2)
[6] | |------|---|---------------------| | 13.2 | such that the code is greater than 500 and repetition is NOT allowed. | (2) | | 13.1 | if repetition is allowed. | (2) | **TOTAL: 150** #### **INFORMATION SHEET: MATHEMATICS** $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ $$A = P(1+ni)$$ $A = P(1-ni)$ $A = P(1-i)^n$ $$A = P(1-ni)$$ $$A = P(1-i)^n$$ $$A = P(1+i)^n$$ $$T_n = a + (n-1)d$$ $$T_n = a + (n-1)d$$ $S_n = \frac{n}{2}(2a + (n-1)d)$ $$T_{\cdot \cdot} = ar^{n-1}$$ $$S_n = \frac{a(r^n - 1)}{r - 1}$$ $$r \neq 1$$ $$S_n = \frac{a(r^n - 1)}{r - 1}$$; $r \neq 1$ $S_{\infty} = \frac{a}{1 - r}$; $-1 < r < 1$ $$F = \frac{x[(1+i)^n - 1]}{i}$$ $$P = \frac{x[1 - (1 + i)^{-n}]}{i}$$ $$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$ $$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad \text{M}\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$ $$\mathsf{M}\left(\frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}\right)$$ $$y = mx + c$$ $$y - y_1 = m(x - x_1)$$ $$y - y_1 = m(x - x_1)$$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$ $$m = \tan \theta$$ $$(x-a)^2 + (y-b)^2 = r^2$$ In $$\triangle ABC$$: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cdot \cos A$ $area \triangle ABC = \frac{1}{2}ab \cdot \sin C$ $$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$ $$area \Delta ABC = \frac{1}{2}ab.\sin C$$ $$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$ $$a = a = a = a$$ $$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$ $$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$ $$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta \qquad \cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$ $$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$ $$\sin 2\alpha = 2\sin \alpha.\cos \alpha$$ $$\bar{x} = \frac{\sum f.x}{n}$$ $$\sigma^2 = \frac{\sum_{i=1}^{n} \left(x_i - \overline{x}\right)^2}{n}$$ $$P(A) = \frac{n(A)}{n(S)}$$ $$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$ $$\hat{y} = a + bx$$ $$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$ ## Downloaded from Stanmorephysics.com ### **MATHEMATICS P1** **SEPTEMBER 2019** ## PREPARATORY EXAMINATION MARKING GUIDELINE ## NATIONAL SENIOR CERTIFICATE **GRADE 12** **MARKS: 150** TIME: 3 hours This marking guideline consists of 13 pages. 2 ### **OUESTION 1** | QUEST | ION 1 | | | |-------|---|--|-----| | 1.1.1 | x = 0 or x = 4 | A✓ 0 A✓ 4 | (2) | | 1.1.2 | $2x^2 + 5x - 1 = 0$ | A√standard form | | | | $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $-(5) \pm \sqrt{(5)^2 - 4(2)(-1)}$ | | | | | $=\frac{-(5)\pm\sqrt{(5)^2-4(2)(-1)}}{2(2)}$ | CA✓ substitution in correct formula | | | | = 0.19 or -2.69 | CA✓CA✓answers | (4) | | | | (penalize 1 mark if rounding off is incorrect-once here for entire paper) | | | 1.2.1 | $\sqrt{x-2} = 2 - x$ | | | | | $(\sqrt{x-2})^2 = (2-x)^2$ $x-2 = 4-4x+x^2$ $x^2-5x+6=0$ $(x-2)(x-3)=0$ $x = 2 \text{ or } x = 3$ n/a | A✓ squaring both sides CA✓ standard form CA✓ factors CA✓ answers and rejecting | (4) | | | OR | OR | | | | $\sqrt{x-2} = 2 - x$ $x-2 \ge 0 and 2 - x \ge 0$ $x \ge 2 and x \le 2$ $x = 2$ | A✓ A✓ each inequality A✓ both inequalities CA✓ answer Answer only FULL MARKS | (4) | | 1.2.2 | $p^2 - p = x$ | letting $p^2 - p = x$ | | | | $\begin{vmatrix} \therefore p^2 - p = 2 \\ p^2 - p - 2 = 0 \end{vmatrix}$ | $CA \checkmark p^2 - p = 2$ $CA \checkmark \text{ standard form}$ | | | | (p+1)(p-2) = 0 | CA√factors | | | | p = -1 or p = 2 | CA✓answers MAX 3marks if four solutions arrived at | (4) | | 1.3 | $-2x^2 + 5x \le 0$ | | | | | $2x\left(x-\frac{5}{2}\right) \ge 0$ | AA✓✓ factors | | | | $x \le 0$ or $x \ge \frac{5}{2}$ | $CA \checkmark x \le 0 \qquad CA \checkmark x \ge \frac{5}{2}$ | (4) | | | OR | OR | | | | $\begin{array}{ c c c c c }\hline & & & & & \\\hline & & & & \\\hline & 0 & & & & \\\hline & 0 & & & & \\\hline & & & & \\\hline \end{array}$ | If graphical Solution is used:
AA 2 marks for graph | | | | 2,5 OR 0/2,5 | CACA 2 marks for answer | (4) | ## Mathemalic Ownloaded from Stanmarephysics.com September 2019 Preparatory Examination NSC Marking Guideline | | 1150 111 | arking Garacinic | | |-----|---------------------------------|-----------------------------------|------| | 1.4 | $2^{x+1} + 2^x = 3^{y+2} - 3^y$ | | | | | $2^x(2+1) = 3^y(9-1)$ | A√factorising | | | | $2^x(3) = 3^y(8)$ | CA√simplifying | | | | $2^{x-3} = 3^{y-1}$ | CA√exponential form | | | | x - 3 = 0 and y - 1 = 0 | CA ✓ each exponent and equal to 0 | | | | x = 3 and $y = 1$ | $CA \checkmark x$ and y value | | | | x + y = 4 | CA✓answer | (6) | | | | If $x - 3 = 0$ and $y - 1 = 0$ is | , , | | | | missing then maximum 5/6 marks | | | | | | [24] | | | | | | | 2.1 | 48 ; 63 | A✓answers | (1) | |-----|---------------------------------------|-------------------------|-----| | 2.2 | 8 15 24 35 | | | | | 1D 7 9 11 | | | | | 2D 2 2 | | | | | | A ✓ a value | | | | 2a = 2 $a = 13a + b = 7$ $b = 4$ | CA ✓ b value | | | | a+b+c=8 $c=3$ | $CA \checkmark c$ value | | | | $T_n = n^2 + 4n + 3$ | CA✓answer | (4) | | | OR | OR | | | | 2a = 2 $a = 1T_1 + d_2 - d_1 = c$ | $A \checkmark a$ value | | | | 8 + 2 - 7 = c | | | | | 3 = c | $CA \checkmark c$ value | | | | $T_n = n^2 + bn + 3$
8 = 1 + b + 3 | | | | | b = 4 | CA ✓ b value | (4) | | | $T_n = n^2 + 4n + 3$ | CA√answer | OR | OR | | |---|--------------------------------------|-----| | $T_n = T_1 + (n-1)d_1 + \frac{(n-1(n-2))}{2}d_2$ | A√formula | | | $= 8 + (n-1)(7) + \frac{2}{2}(2)$ | A√substitution into correct formula | | | $= 8 + 7n - 7 + n^2 - 3n + 2$ | CA√simplifying | | | $= n^2 + 4n + 3$ | CA✓answer | (4) | | OR $T_{n} = \frac{n-1}{2} [2a + (n-2)d] + T_{1}$ | OR
A√formula | | | $= \frac{n-1}{2} [2(7) + (n-2)(2)] + 8$ | A✓ substitution into correct formula | | | $= \frac{n-1}{2} [14+2n-4]+8$ $= \frac{n-1}{2} [2n+10]+8$ | CA√simplifying | (4) | | $= (n-1)(n+5) + 8$ $= n^2 + 4n - 5 + 8$ | | | | $= n^{2} + 4n + 3$ $= n^{2} + 4n + 3$ | CA ✓ answer | | | | | [5] | | 3.1 | $T_2 - T_1 = T_3 - T_2$ | A✓ equating differences | | |-------|--|--|-----| | | p + 5 - 2p + 3 = 2p + 7 - p - 5 $-p + 8 = p + 2$ $p = 3$ | CA√simplifying
CA√answer | (3) | | 3.2 | Pattern is 3; 8; 13; $S_n = \frac{n}{2} [2a + (n-1)d]$ $S_{120} = \frac{120}{2} [2(3) + 119(5)]$ $= 36060$ | $CA \checkmark a = 3$ and $d = 5$
$CA \checkmark$ substitution into formula
$CA \checkmark$ answer | (3) | | 3.3.1 | x = k + 1 and y = k + 2 | $A\checkmark x$ – value $A\checkmark y$ – value | (2) | # Mathematic Opynloaded from Stanmarephysics.com September 2019 Preparatory Examination NSC Marking Guideline | 3.3.2 | $T_x = a + (x - 1)d = 3 + 5k$
$T_y = a + (k + 1)d$ | CA \checkmark substitution into n^{th} term CA \checkmark 3 + 5 k | | |-------|---|---|------| | | $= 3 + (k + 1)(5)$ $= 8 + 5k$ $T_x + T_y = 11 + 10k$ | $CA \checkmark 8 + 5k$ $CA \checkmark answer$ | (4) | | | | | [12] | | 4.1.1 | 15;5 | AA✓✓ both terms | (2) | |-------|--|---|-----| | 4.1.2 | $S_{\infty} = \frac{a}{1 - r}$ $= \frac{15}{1 - \frac{1}{3}}$ $= \frac{45}{2} = 22,5$ | CA✓substitution of common ratio CA✓answer | (2) | | 4.2 | $sin 3 0^{\circ}; cos 3 0^{\circ}; \frac{3}{2}$ $\frac{1}{2}; \frac{\sqrt{3}}{2}; \frac{3}{2}$ $a = \frac{1}{2}; r = \sqrt{3}$ $ar^{n-1} = 40,5\sqrt{3}$ $\frac{1}{2}(\sqrt{3})^{n-1} = \frac{81}{2}\sqrt{3}$ $3^{\frac{n-1}{2}} = 3^4 \cdot 3^{\frac{1}{2}}$ $\frac{n-1}{2} = 4\frac{1}{2} = \frac{9}{2}$ $n-1=9$ $n=10$ OR | A listing terms $CA \checkmark \frac{1}{2} (\sqrt{3})^{n-1} = \frac{81}{2} \sqrt{3}$ $CA \checkmark 3^{\frac{n-1}{2}} = 3^4 \cdot 3^{\frac{1}{2}}$ $CA \checkmark \frac{n-1}{2} = 4^{\frac{1}{2}} = \frac{9}{2}$ $CA \checkmark \text{answer}$ OR | (5) | | | NSC Marking Guideline | | |---|--|-----| | $sin 3 0^{\circ}; cos 3 0^{\circ}; \frac{3}{2}$ $\frac{1}{2}; \frac{\sqrt{3}}{2}; \frac{3}{2}$ $a = \frac{1}{2}; r = \sqrt{3}$ | A√listing terms | | | $a = \frac{1}{2}; r = \sqrt{3}$ $ar^{n-1} = \frac{81}{2}\sqrt{3}$ $\frac{1}{2}(\sqrt{3})^{n-1} = \frac{81}{2}\sqrt{3}$ $\frac{(\sqrt{3})^n}{\sqrt{3}} = 81\sqrt{3}$ | $CA \checkmark \frac{1}{2} \left(\sqrt{3}\right)^{n-1} = \frac{81}{2} \sqrt{3}$ | | | $243 = \left(\sqrt{3}\right)^n$ $3^5 = 3^{\frac{1}{2}n}$ $n = 10$ | $CA \checkmark 243 = \left(\sqrt{3}\right)^n$ $CA \checkmark 3^5 = 3^{\frac{1}{2}n}$ $CA \checkmark \text{answer}$ | (5) | | | | [9] | | 5.1 | x = 2 and y = -1 | $AA\checkmark x = 2 \checkmark y = -1$ | (2) | |-----|--|---|-----| | 5.2 | y - intercept:(0; -3) | $A\checkmark y$ – intercept | | | | $x - \text{intercept: } \frac{-4}{2 - x} - 1 = 0$ $\frac{-4}{2 - x} = \frac{1}{1}$ | $A\checkmark \frac{-4}{2-x} - 1 = 0$ | | | | $ \begin{array}{r} -4 = 2 - x \\ x = 6 \\ (6; 0) \end{array} $ | $A\checkmark x$ – intercept (co-ordinate form not needed) | (3) | | 5.3 | <i>y</i> • | $CA \checkmark x$ -intercepts | | | | | CA ✓ y - intercept | | | | | CA ✓ both asymptotes | | | | $\frac{x}{0}$ | A√shape | | | | 2 6 | | (4) | | | -3 | | | | | | | [9] | | 6.1 | A(0; 6) | A✓answer (Must be in coordinate form) | (1) | |-------|---|---|-----| | 6.2 | $x = -\frac{b}{2a} = 2,5$ $S(5; 6)$ | Using axis of symmetry $A \checkmark x - \text{value} A \checkmark y - \text{value}$ OR | (2) | | | OR
y = x + 1 = 6
x = 5
S(5; 6)
OR
$y = -x^2 + 5x + 6 = 6$
$x^2 - 5x = 0$
x(x - 5) = 0
x = 0 or x = 5
n/a
S(5; 6)
OR
$-x^2 + 5x + 6 = x + 1$ | A \checkmark equating equation to 6 A \checkmark x – value OR A \checkmark equating equation to 6 A \checkmark x – values and rejection | (2) | | 6.3 | $-x^{2} + 5x + 6 = 0$ $x^{2} - 5x - 6 = 0$ $(x + 1)(x - 6) = 0$ $x = -1 \text{ or } x = 6$ $B(-1; 0), C(6; 0)$ | A \checkmark factors CACA $\checkmark \checkmark x$ – values | (3) | | 6.4 | $(-x^{2} + 5x + 6) - (x + 1) = 5$ $-x^{2} + 5x + 6 - x - 1 = 5$ $x^{2} - 4x = 0$ $x(x - 4) = 0$ $x = 0 \text{ or } 4$ $0R = 4 \text{units}$ | A✓subtraction of both graphs A✓equating to 5 CA✓factors CA✓OR value | (4) | | 6.5.1 | $x = \frac{-1+6}{2} = \frac{5}{2}$ $y = -\left(\frac{5}{2}\right)^2 + 5\left(\frac{5}{2}\right) + 6 = \frac{49}{4} = 12,25$ $\left(\frac{5}{2}; 12,25\right)$ OR | A√midpoint formula CA√Axis of symmetry value CA√substitution CA√answer OR | (4) | | | | ng Guideline | | |-------|--|---|------| | | $x = -\frac{b}{2a} = -\frac{5}{2(-1)} = \frac{5}{2}$ | A√formula | | | | (5) ² (5) 49 | CA✓Axis of symmetry value | | | | $y = -\left(\frac{5}{2}\right)^2 + 5\left(\frac{5}{2}\right) + 6 = \frac{49}{4} = 12,25$ | CA✓substitution | | | | $\left(\frac{5}{2};12,25\right)$ | CA✓answer | (4) | | | OR | OR | | | | $f'(x) = -2x + 5 = 0$ $\therefore x = \frac{5}{2}$ | A√derivative and equal to 0 | | | | $y = -\left(\frac{5}{2}\right)^2 + 5\left(\frac{5}{2}\right) + 6 = \frac{49}{4} = 12,25$ | CA ✓ Axis of symmetry value | | | | | CA√substitution | | | | $\left(\frac{5}{2}; 12,25\right)$ | CA✓answer | (4) | | 6.5.2 | $PQ = -x^2 + 4x + 5$ | $A \checkmark PQ$ in terms of x | | | | b 4 2 | CA✓ substitution | | | | $x = -\frac{b}{2a} = -\frac{4}{2(-1)} = 2$ | $CA \checkmark x - value$ | | | | Max. $PQ = -(2)^2 + 4(2) + 5 = 9$ units | CA✓answer | | | | | | (4) | | | OR | OR | (') | | | $PQ = -x^2 + 4x + 5$ | $A \checkmark PQ$ in terms of x | | | | $PQ' = -2x + 4 = 0 \therefore x = 2$ | CA \checkmark derivative and equal to 0 CA \checkmark x – value | (4) | | | Max. $PQ = -(2)^2 + 4(2) + 5 = 9$ units | CA√answer | (4) | | | | | [18] | | | | | | | 7.1 | $y = 5^x$ | AA✓✓ answer | (2) | |-----|---|---|------------| | 7.2 | $y > 0$ or $y \in (0; \infty)$ | A✓answer | (1) | | 7.3 | $log_5 x = -4$ $x = 5^{-4} = \frac{1}{625}$ $0 < x \le \frac{1}{625}$ | A✓Equating log graph to −4 A✓writing in exponential form CA✓end points A✓ interval | | | | | Can be solved by log inequalities. | (4)
[7] | | 8.1 | $A = P(1-i)^n$ | | | |-------|---|-----------------------------------|-----| | | $250000 = P(1 - 13,5\%)^5$ | A✓ substitution into the correct | | | | $P = \frac{250000}{(1 - 13.5\%)^5}$ | formula | | | | $(1-13,5\%)^5$ | CA ✓ making P the subject | | | | = R516249 | CA (automatic | (3) | | | | CA√answer | (0) | | 8.2.1 | $P = \frac{x[1 - (1+i)^{-n}]}{i}$ | $A\checkmark$ value of n | | | | i -2407 | A \checkmark value of i | | | | $x \left 1 - \left(1 + \frac{14,25\%}{12} \right)^{-240} \right $ | CA✓ substitution into correct | | | | $950000 = \frac{x \left[1 - \left(1 + \frac{14,25\%}{12} \right)^{-240} \right]}{\frac{14,25\%}{12}}$ | formula | | | | 12 | CA (| (4) | | | x = R11986,33 | CA√answer | \ | | 8.2.2 | $x[1-(1+i)^{-n}]$ | | | | | $P = \frac{x[1 - (1+i)^{-n}]}{i}$ | A√Present value formula | | | | | $A\checkmark$ value of n | | | | $= \frac{11986,33\left[1 - \left(1 + \frac{14,25\%}{12}\right)^{-140}\right]}{12}$ | CA✓ substitution into correct | | | | 14,25% | formula | | | | = R816048,67 | CA√answer | | | | | | (4) | | | OR | OR | | | | $A = P(1+i)^n$ | | | | | $A = 950\ 000 \left(1 + \frac{14,25\%}{12}\right)^{100}$ | A (G 1 ('' ' ' ' ' C | | | | =R3093215,766 | A✓Substitution into Compound | | | | 1 | Interest Formula | | | | $F = \frac{x[(1+i)^n - 1]}{i}$ | | | | | $F = \frac{11986,33\left[\left(1 + \frac{14,25\%}{12}\right)^{100} - 1\right]}{\frac{14,25\%}{12}}$ | CA√substitution into Future Value | | | | $F = \frac{11700,33\left[\left(\frac{1}{12}\right)\right]}{12}$ | Formula | | | | $\frac{14,25\%}{12}$ | | | | | | | | | | =R2277167,107 | | | | | Balance on Loan | | | | | = R3093215,766 -R2277167,107 | CA✓A -F | (4) | | | = R816048,67 | CA✓answer | | | | NSC Wark | ng Guideime | | |-------|---|---|------| | 8.2.3 | $A = P(1+i)^{n}$ $= 816 \ 048,67 \left(1 + \frac{14,25\%}{12}\right)^{4}$ $= R855 \ 506,92$ | CA✓substitution | | | | $855 506,92 = \frac{x[1 - (1+i)^{-n}]}{i}$ $-\frac{x\left[1 - \left(1 + \frac{14,25\%}{12}\right)^{-136}\right]}{}$ | CA \checkmark substitution of P and i A \checkmark value of n | | | | $= \frac{14,25\%}{12}$ $x = R12711,51$ | CA✓answer | (4) | | | | | [15] | **QUESTION 9**(penalize 1 mark once for incorrect notation in this question) $9.1 f(x+h) - f(x) A\checkmark formula$ | 9.1 | $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ | A✓ formula | | |-----|--|--|-----| | | $= \lim_{h \to 0} \frac{(x+h)^2 - \frac{1}{2}(x+h) - \left(x^2 - \frac{1}{2}x\right)}{h}$ | A✓substitution | | | | $=\lim_{h\to 0} \frac{x^2 + 2xh + h^2 - \frac{1}{2}x - \frac{1}{2}h - x^2 + \frac{1}{2}x}{h}$ | CA✓ simplification of numerator | | | | $= \lim_{h \to 0} \frac{h\left(2x + h - \frac{1}{2}\right)}{h}$ | CA✓factorization | (5) | | | $=2x-\frac{1}{2}$ | CA✓answer
OR | | | | OR $f(x+h) = (x+h)^2 - \frac{1}{2}(x+h)$ $f(x+h) = x^2 + 2xh + h^2 - \frac{1}{2}x - \frac{1}{2}h$ | A \checkmark value of $f(x+h)$
CA \checkmark simplification | | | | $f(x+h) - f(x) = 2xh + h^2 - \frac{1}{2}h$ $f(x+h) - f(x) = 2xh + h^2 - \frac{1}{2}h$ | | (5) | | | $\frac{f(x+h) - f(x)}{h} = \frac{2xh + h^2 - \frac{1}{2}h}{h}$ $\frac{f(x+h) - f(x)}{h} = \frac{h(2x + h - \frac{1}{2})}{h}$ | CA✓factorization | | | | $f'(x) = \lim_{h \to 0} \left(2x + h - \frac{1}{2}\right)^h$ | A√formula | | | | $f'(x) = 2x - \frac{1}{2}$ | CA✓answer | | | | | | | ## Mathematic Opynloaded from Stanmarephysics.com September 2019 Preparatory Examination NSC Marking Guideline | | 1,501,1411 | ng Guideinie | | |-------|--|---|------| | 9.2.1 | $\frac{d}{dx}[3x^4 + \sqrt[5]{x} + a^2]$ | | | | | $\frac{d}{dx} \left[3x^4 + x^{\frac{1}{5}} + a^2 \right]$ $= 12x^3 + \frac{1}{5}x^{-\frac{4}{5}}$ | A rewriting in exponential form $A \checkmark CA \checkmark$ derivatives Penalize 1 mark if a is included in answer | (3) | | 9.2.2 | $xy = x + x^2 - 1$ | A \checkmark dividing by $x (x \neq 0)$
A \checkmark $1 + x - x^{-1}$ | | | | $y = 1 + x - x^{-1}$ | $A \checkmark 1 + x - x^{-1}$ | | | | $xy = x + x^{2} - 1$ $y = 1 + x - x^{-1}$ $\frac{dy}{dx} = 1 + x^{-2}$ | CACA✓✓ each derivative | (4) | | | | | [12] | | | | | 1 | | 10.1.1 | $x^3 + 5x^2 - 8x - 12 = 0$ | | | |--------|---|---|-----| | | (x+1) is a factor $f(-1)=0$ | | | | | $(x+1)(x^2-4x-12)=0$ | $A \checkmark f(-1) = 0 A \checkmark (x+1)(x^2 - 4x - 12) = 0$ | (6) | | | (x+6)(x+1)(x-2) = 0 | | | | | x = -6 or x = -1 or x = 2 | A✓ all three factors CACACA✓ ✓ each value Answer only 3/6 Marks | | | 10.1.2 | $f(x) = x^3 + 5x^2 - 8x - 12$ | | | | | $f'(x) = 3x^2 + 10x - 8 = 0$ | A✓derivative and equal to 0 CA✓factors | | | | (3x - 2)(x + 4) = 0 | CAVIACIOIS | | | | $x = \frac{2}{3} \text{ or } x = -4$ | $CA \checkmark x$ – values | | | | $f\left(\frac{2}{3}\right) = \left(\frac{2}{3}\right)^3 + 5\left(\frac{2}{3}\right)^2 - 8\left(\frac{2}{3}\right) - 12 = -\frac{400}{27}$ | | | | | =-14,81 | $CA \checkmark y$ – value | (4) | | | $B\left(\frac{2}{3};-14,81\right)$ | | | | 10.1.3 | f''(x) = 6x + 10 = 0 | CA√second derivative and | | | | 5 | equal to 0
CA√answer | (2) | | | $x = -\frac{5}{3}$ | CA answer | | | | OR | OR | | | | $x = \frac{\frac{2}{3} + (-4)}{2} = -\frac{5}{3}$ | CA✓subst. into midpoint formula CA✓answer | (2) | | | OR | OR | | | | $x = -\frac{b}{3a} = -\frac{5}{3}$ | A√formula
CA√answer | (2) | | | | Marking Guidenne | | |--------|---|--|------| | 10.2.1 | f'(0) = -8 $y = -8x - 12$ | CA √ gradient | (2) | | | y = -8x - 12 | CA✓answer | | | 10.2.2 | f'(x). g'(x) > 0
Since $g'(x) < 0$ for all $x \in R$
$(3x^2 + 10x - 8) < 0$ | $A \checkmark g'(x) < 0$ | | | | (3x-2)(x+4) < 0
$-4 < x < \frac{2}{3}$
OR
$-4 < x < \frac{2}{3}$ | CA√factors CA✓answer OR CACA ✓✓end points A✓interval | (3) | | | | | [14] | | 11.1 | $\Delta PQB:$ $\frac{PQ}{2y} = tan 6 0^{\circ}$ $\therefore PQ = 2\sqrt{3}y$ $QR = d - 4y$ $A = 2\sqrt{3}y(d - 4y)$ | A✓ tan 60° A✓ setting up ratio A✓ value of PQ A✓ value of QR | (4) | |------|---|--|-----| | | OR $\Delta APS \text{ is equilateral}$ $AP = PS = AS = d - 4y$ | OR A✓ value of PS | | | | SC = 4y
$SR^2 = (4y)^2 - (2y)^2 = 12y^2$
$SR = 2\sqrt{3}y$ | A✓value of SC A✓use of theorem of Pythagoras A✓value of SR | | | | $A = 2\sqrt{3}y(d - 4y)$ | | (4) | | 11.2 | $A = 2\sqrt{3}y(d - 4y).$ $= 2\sqrt{3}yd - 8\sqrt{3}y^{2}$ $A' = 2\sqrt{3}d - 16\sqrt{3}y = 0$ $d - 8y = 0$ $y = \frac{d}{8}$ | A \checkmark expression for Area CA \checkmark derivative and equal to 0 CA \checkmark y – value | | ## Mathema Depended from Stanmagephysics.com September 2019 Preparatory Examination NSC Marking Guideline | Max A | $1 = 2\sqrt{3} \cdot \frac{d}{8} \left(d - 4 \left(\frac{d}{8} \right) \right)$ | CA√ substitution into original equation | | |-------|---|---|------| | | $=\frac{\sqrt{3}d}{4}\left(d-\frac{d}{2}\right)$ | CA✓simplifying | | | | $=\frac{\sqrt{3}d}{4}\left(\frac{d}{2}\right)=\frac{\sqrt{3}d^2}{8}$ | CA✓answer | (6) | | | | | [10] | ### **QUESTION 12** | 12.1 | $P(GG) = \frac{18}{40} \cdot \frac{17}{39}$ | $A\sqrt{\frac{18}{40}} A \sqrt{\frac{17}{39}}$ | | |------|--|---|-----| | | $= \frac{51}{260} \text{ or } 0.1962 \text{ or } 19.62\%$ | A✓answer in any form | (3) | | 12.2 | P(B and R) = $\frac{12}{40}$. $\frac{10}{39} + \frac{10}{40}$. $\frac{12}{39}$ | $A\sqrt{\frac{12}{40}} \cdot \frac{10}{39} A\sqrt{\frac{10}{40}} \cdot \frac{12}{39}$ | | | | $P(B \text{ and } R) = \frac{2}{13} \text{ or } 0,1538 \text{ or } 15,38 \%$ | A✓answer in any form | (3) | | | | | [6] | ### **QUESTION 13** | 13.1 | $9 \times 9 \times 9 = 729$ | | | | A√9 x 9 x 9 | (2) | |------|-----------------------------|----------|----------|----------|---------------------|-----| | | | | | | A√729 | | | 13.2 | 5 x 8 x 7 | = 280 | | | A√5 x 8 x 7 | | | | OR | | | | A✓280
OR | (2) | | | 5 | 8 digits | 7 digits | 56 ways | | | | | 6 | 8 digits | 7 digits | 56 ways | | | | | 7 | 8 digits | 7 digits | 56 ways | A√table | | | | 8 | 8 digits | 7 digits | 56 ways | | | | | 9 | 8 digits | 7 digits | 56 ways | | | | | | | Total | 280 ways | A✓answer | (2) | | 13.3 | 9 x 1 x 9 | = 81 | | | A√9 x 1 x 9
A√81 | (2) | | | | | | | | [6] | **Total: 150**